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including cross-checking and complementing the automa-
tion to accomplish the intended function within a broader 
established activity [17]. The provision of a machine-gener-
ated explanation has been proposed as a way to assist people 
in gaining this expertise. When are explanations needed? 
What are the best ways to explain AI systems? How should 
the performance of XAI systems be evaluated?

1.1 Background

The literature on explanation and explanatory reasoning is 
vast, if not overwhelming. It spans centuries of scholarship 
in philosophy and research in psychology. Explanatory rea-
soning has clear linkages to the equally vast literatures on 
causation and causal reasoning. Key concepts of XAI were 
manifest in research spanning the 1970s-80s on Intelligent 
Tutoring Systems [16–18], on intelligent assistants [10, 11, 
30] and on expert systems [16, 65]. The research revealed 
challenges for explanation systems, which will be familiar 
to developers of XAI systems:

 ● The need to provide both global or architectural expla-
nations (How it works) and local or procedural explana-
tions (Why it did that),

 ● The need to explain the reason or rationale for proce-
dures and explanations,

 ● The need to match explanations to user goals, including 
their changing goals,

1 Introduction

The general objective of Explainable AI (XAI) is to develop 
methods that enable people to achieve a satisfying and useful 
understanding of an AI system’s capabilities and vulnerabil-
ities [see 70]. This objective pertains to stakeholders such as 
policy makers, system integrators, and trainers, but it per-
tains especially to end-users. Understanding how to use an 
AI system makes it possible for people to act appropriately, 
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This paper summarizes the psychological insights and related design challenges that have emerged in the field of Explain-
able AI (XAI). This summary is organized as a set of principles, some of which have recently been instantiated in XAI 
research. The primary aspects of implementation to which the principles refer are the design and evaluation stages of XAI 
system development, that is, principles concerning the design of explanations and the design of experiments for evaluating 
the performance of XAI systems. The principles can serve as guidance, to ensure that AI systems are human-centered and 
effectively assist people in solving difficult problems.
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 ● The need to settle the matter of “fragile credibility” or 
trust and reliance (e.g., users often prefer to pursue their 
own goals rather than follow the given advice),

 ● The need to enable users to actively test the explanations 
and explore the boundary conditions of the AI,

 ● The need to fully integrate a help system with the 
application,

 ● The need to be able to deal with user misinterpretations 
of explanations, via a dialog,

 ● The need to deal with “tangled errors” when one mistake 
leads to another and the situation becomes uncorrectable,

 ● The need to reveal usefulness and usability challenges 
(e.g., help systems can trigger annoyance rather than 
help users).

The topic of XAI has ramped up quickly. Researchers have 
created Machine Learning systems for object recognition 
that “explain” their categorization of objects or images 
using saliency or “heat” maps showing what the AI system 
“is looking at.” Researchers have created software agent 
systems that explain their choice of courses of action using 
such displays as histograms or matrices of probabilities [see 
30]. There has been a wave of review articles and a wave 
of attempts to taxonomize machine-generated explanations 
(qualities, formats, data types, purposes, etc.) [7, 12, 62, 64, 
72, 79].

Many issues have emerged in this research. For instance, 
there have been lamentations about the ambiguity of key 
concepts including transparency, interpretability and 
explainability [2, 6, 8, 15, 46, 47, 53, 61]. Interpretability 
tools are advertised as exposing machine learning inter-
pretability algorithms, and thereby explain the output of 
machine learning systems. But the “explanations” that these 
systems provide are code-intensive representations of the 
results from statistical or game-theoretic modeling. They 
serve more to justify system architectures to other computer 
scientists [1] than to explain AI systems in ways that make 
sense to people generally [57]. Recent research has begun to 
address the issue of experimental adequacy and rigor [4, 9, 
37, 40, 50, 54, 67, 73].

A program established in 2018 by the US Defense 
Advanced Research Projects agency was a major impetus 
for the field (although the concept of XAI pre-dates it [see 
69]). What has been accomplished in the field of XAI most 
recently, what assumptions have been revealed, and what 
remains to be done in order to ensure that AI systems are 
“human-centered”? XAI research has identified some prin-
ciples that should be appreciated [12, 64]. These represent 
the findings of a broad range of research and scholarship at 
the nexus of AI, automation, and human-machine systems 
[31, 60]. We highlight the ways in which these principles 

have been invoked and in some cases have been integrated 
into AI research.

1.2 Organization

This article is organized as a set of twelve principles, some 
of which have recently been instantiated in XAI systems. 
The purpose of the principles is to express guidance for 
XAI system developers, not to solve immediate problems of 
the design of explanations, displays or experimental evalu-
ations. The principles might be thought of as cautionary 
tales, or more strongly as necessary considerations. Details 
concerning the design of explanations and evaluations, and 
that are in accordance with the Principles, are presented in 
[42, 47, 66].

The Principles fall into these groupings:

 ● Cognition as a determiner of what it means to explain,
 ● Orchestration of the process of explaining,
 ● Designing explanations,
 ● Designing empirical evaluations.

2 The Cognitive Perspective: What does it 
Mean to Explain?

2.1 Principle 1: All Explanation Involves Self-
Explanation

This principle is about how XAI system developers should 
think about the cognitive process of explanation. The prin-
ciple might be deemed the Golden Rule of XAI systems: 
Explain unto others in such a way as to help them explain 
to themselves. From the moment the user receives their first 
instruction on how to use an AI system, there is an active 
process of self-explanation. It may be brief and superficial, 
resulting in knowledge that is fragmentary and inconsistent 
[22] or the self-explanation process may be drawn-out and 
deliberative. Sometimes users/learners simply do not care 
“how it works” and just want to get on with their task or 
job. But self-explanation is often a highly motivated desire 
to understand. This assertion derives from psychological 
experimentation [13] and empirical research on how people 
explain complex systems to other people [51, 52].

Explanations can help learners form and refine their men-
tal model of the AI and the task. But the achievement of 
an understanding is not just the ingestion of information. 
Self-explaining involves changing preconceptions by both 
assimilation and accommodation, to use Piagetian terminol-
ogy. Thus, it can be useful for the learner to see what happens 
when the AI system fails, or is at its boundary conditions. 
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Failure cases can be a signal of a model mismatch [38], 
especially if the AI system fails in ways that humans would 
never fail (e.g., confusing a turtle with a rifle) [14, 41].

The self-explanation process can be seen in research 
that has used cognitive interviews to assess explanatory 
efficacy [5]. A number of researchers have noted that sur-
prising events or violations of expectations trigger a need 
for an explanation. This has been considered in psychol-
ogy, especially in research on curiosity [58]. A model of 
self-explanation is emerging in XAI based on the psycho-
logical investigation of explanatory reasoning [52] and XAI 
research on levels of intelligibility [56].

This first principle entails a reconsideration of the basic 
conceptual model that motivated some early XAI research, 
including the DARPA Explainable AI Program, which was 
a major impetus for the field in 2018–2021. This model is 
depicted in Fig. 1. This model approached the topic from a 
programmatic, computer science point of view. The expla-
nation is generated and then is delivered, (ideally) to good 
effect. The model highlights the things that would have to 
be measured in an evaluation of an XAI system (the shaded 
nodes in Fig. 1):

(1) Is the explanation good in the sense that it accords with 
the criteria that have been espoused in the literatures on 
explanatory reasoning (succinct, understandable, etc.)?

(2) Is the explanation satisfying in the judgment of the 
users?

(3) Do the users really understand the explanation?
(4) Does performance improve because of the explanation?

This model expressed the premise that explanation of 
how the AI system works is presented early, at the point 
where the user is being instructed on the task and the tool. 
A further assumption was that subsequent human-computer 
interaction would involve the generation and presentation 
of specific machine decisions [62]. These assumptions had 
a positive impact in that they highlighted the distinction 
between local (Why did it decide that?) and global (How 
does it work?) explanations, a distinction that many XAI 
researchers embraced [28, 77].

In parallel with the computer science work, empirical 
analysis was conducted of a large corpus of cases where a 
person was the recipient of an explanation of how some sort 
of complex system works [52]. Many of the cases illustrated 
how global explanations often include local information 
(e.g., instances that exemplify rules or principles), and local 
explanations often include some global information (e.g., 
a generalization over a class of instances). Thus, in actual 
explanation events, the global-local distinction gets blurry. 
A second revelation from the empirical research was that the 
“spoon feeding” paradigm expressed in Fig. 1 is blind to the 
fact that users engage in a motivated, deliberative attempt 
to make sense of the AI system and any explanatory mate-
rial that may be presented. This is diagrammed in Fig. 2. 
In this psychological model, explanatory systems benefit by 
providing information that empowers users to self-explain, 
rather than just delivering some sort of representation of the 
output of an algorithm, a representation that is believed to 
be adequate as an explanation.

The Fig. 1 model is Programmatic, that is, it was a 
description of an approach to evaluation methodology (i.e., 
what to measure and when to measure it). The emphasis 

Fig. 1 2018 model of the XAI process, from the perspective of computer science
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formal) information. XAI researchers have recognized the 
value of narrative explanations that describe causal rela-
tions, and the value of narrative explanations [31].

As was discovered in the research on Intelligent Tutoring 
Systems (ITS), an XAI system’s explanation capabilities 
need to be designed on the basis of a pedagogical model—an 
instantiated model of the instructional process of structured 
interaction, which in turn is based on a cognitive model of 
learning [18]. XAI systems might attempt to identify the 
user’s current understanding (so that it can better predict 
how to transform this knowledge), and support the informa-
tion that will help make these transformations. This may be 
asking a lot of XAI system developers who might not think 
of XAI as a form of ITS. But for XAI to work as intended, it 
needs to accord with the key findings from ITS research [see 
18]. Recent research has demonstrated that XAI systems 
can support the user in a process of active exploration [37].

2.3 Principle 3: Explanation Relates to Trust, but 
Trust must be Considered a Dynamic Process, not a 
State

This Principle is about how XAI system developers should 
conceive of the relation between explanation and trust/
reliance in an AI system. The notional model of the XAI 
process (Fig. 1, above) assumed that good explanation will 
result in trust. But trust is not a single state that develops to 
some level of calibration. In work contexts in which humans 
rely on computational technologies, people always feel 
some mixture of justified and unjustified trust and justified 
and unjustified mistrust. These attitudes are in constant flux 
and rarely develop in a progression to some ideal and stable 
point [4, 35, 39, 55]. Trust can come and go in a flash. When 

was on the performance of the user, given that the user ben-
efits from the machine-generated explanations. As such, the 
model made limiting assumptions about the psychological 
aspects of explanation. While the measurement nodes of 
Fig. 1 might be ported into the Fig. 2 model, the Fig. 2 psy-
chological model refers to the performance of the human-
XAI system. Additionally, the model situates performance 
in a loop with the process of self-explanation, which can be 
thought of as the user’s refinement of their mental model.

2.2 Principle No. 2: Explanation is an Exploratory 
Activity

Following from the notion of progressive refinement that is 
illustrated in Fig. 2, Principle 2 is also about how XAI sys-
tem developers should think about the process of explain-
ing. Most taxonomies of types of explanations or features 
of explanations are predicated on the view that the property 
of being an explanation is a property of text, visualizations, 
etc. The mantram Explanation is Exploration is another les-
son from the XAI research. It harkens back to John Dewey’s 
theory of inquiry [70]. Explanations should not force learn-
ers to adopt the AI’s model, a model that is not their own, 
and is arguably not human, and can only be assimilated with 
difficulty. Explanations can actually impair learning if they 
do not encourage the learner to discover patterns. Explana-
tions should enable people to diagnose situations, predict 
or anticipate the future and justify decisions or actions. 
Explanations should enable people to notice apparent incon-
sistencies, and the XAI system should enable the user to 
restore consistency between their mental model and empiri-
cal reality. Thus, the explanation process must involve 
the exchange of meaningful (and not just computationally 

Fig. 2 Psychological Model of the XAI process 
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AI decision invalid? XAI systems might benefit from con-
sidering the long-term interaction with users, even in simple 
ways like recognizing that once learned, an explanation may 
not need to be given again unless something important has 
changed. Such design decisions are contextual (see Princi-
ple 7) and specific to individuals (see Principle 10).

As was said above, XAI research initially assumed that 
the property of being an explanation is a property of text, 
images, etc. XAI research initially assumed that explana-
tion only involves providing an explanation to the user, on 
the assumption that the explanation is good and sufficient. 
XAI researchers are escaping these assumptions. Explain-
ing depends on the ability of the human and the machine 
to interact. Explanation as collaboration is another prime 
lesson from XAI research [25, 32, 64]. Some XAI systems 
have come to regard explaining as a two-way process in 
which the XAI program provides explanatory information, 
and the user advises the program in one way or another [28, 
44, 49, 75, 82]. Thus, explanations allowing for user input 
might lead to improvements of the computer model. More 
work has to be done to extend this basic idea. Explanations 
work better when people can interact with them.

3.2 Principle 5: Explanations are most Needed 
when there is a “Trigger.“

Explanations are not needed all the time, but in some early 
XAI research it was assumed that explanations should 
always be presented. The displays created for some early 
XAI always included a field showing “reasons” why the AI 
system made its determination (e.g., a list of key features, or 
a “saliency map” for classifier systems). It remains unclear 
as to whether the persistence of an explanation display 
detracts from performance by virtue of the dedication of 
display real estate to information that is not always needed. 
This is often because users have seen something interesting 
or surprising or they have some sort of goal that they strain 
to achieve. Some triggers have been mentioned above, but 
Table 1 lists those that have been referenced in work on 
XAI systems [see 62]. Furthermore, the triggers are mani-
fest in interviews with stakeholders about their explanation 
requirements [38]. That said, not all XAI researchers may 
see it as the goal of their XAI systems to provide explana-
tory answers to some of these trigger questions.

Advances in AI (and XAI) will come when systems 
begin to understand and anticipate situations that are likely 
to engender surprise and violate user expectations [69].

the AI fails in a way that a human would never fail, reliance 
can collapse.

3 Orchestrating of the Process of Explaining

3.1 Principle 4: Exploration is Interaction; it is never 
a “One-Off”

This Principle is an extension of Principle 2. For many 
XAI systems, explaining has to be thought of as a process 
that extends over multiple uses and interactions. Explain-
ing could extend over multiple sessions if the user wants to 
check back on a previous case. Or, the user might want to 
test the coverage of the AI by presenting it various counter-
factual test cases.

Explanation cannot be a one-off if only because the 
AI system is a machine learning system which itself can 
continually evolve. Especially for AI systems that learn or 
are applied in dynamic contexts, users often need repeated 
explanations and re-explanations. How has the algorithm 
changed? How are AI system’s decisions affected by the 
new data, and if the new data themselves are not valid, is the 

Table 1 “Triggers” of the need for an explanation, mapped onto the 
user’s goals
Triggers User/Learner’s Goal

Need to Understand Need to 
Accomplish

How do I use it? Use Primary Task 
Goals

How does it work? Mechanism,
Understandability

Feeling of 
Satisfaction

How will it help me do a 
better job?

Usefulness Primary Task 
Goals

What did it just do? Mechanism,
Understandability

Feeling of 
Sufficiency

What does it achieve? Function Usefulness
What will it do next? Observability Trust, Reliance
How much effort will this 
take?

Usability Primary Task 
Goals

What can’t it do? What are 
its limitations?

Function Trust, Reliance

What do I do if it gets it 
wrong?

Anticipation Control

How do I avoid the failure 
modes?

Surprise Adaptation, 
Work-around

What would it have done 
if x was different?

Mechanism, 
Understandability

Curiosity, 
Trust, Reliance

Why didn’t it do z? Anticipation, Surprise Curiosity, 
Trust, Reliance

What do I do if I mistrust 
or distrust the tool?

Observability Trust, Reliance

How can I repair the tool 
or help it work better?

Usefulness Primary Task 
Goals, Feeling 
of Satisfaction, 
Adaptation
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4 The Design of Explanations

4.1 Principle 8: Explanation Occurs in a Context, 
Carrying with it the Goals of the Work System

Explanation is an interaction among the user, the XAI sys-
tem, and their activity in a task context. Different explana-
tions support different information needs for different tasks 
within a broader set of work goals. Explanation needs of the 
user are also related to role of the user within that broader 
work context [38]. Stakeholders sometimes need access to 
others (e.g., trusted engineers, trusted vendors) in order for 
them to be able to develop satisfying mental models of AI 
systems. Trainers need to know how the AI system fails and 
how it misleads as much as they need to know how it works. 
Some stakeholders need to develop an understanding that 
enables them to explain the AI to someone else and not just 
satisfy their own sensemaking requirements.

4.2 Principle 9: Explanations Tend to Work Better 
if they Include Demonstrations of Differences and 
Contrasts

This Principle is about the design of machine-generated 
explanations. A central lesson of XAI research is the util-
ity of contrastive and counterfactual explanations in under-
standing the boundary conditions of a system [5, 25, 28, 60]. 
XAI researchers have begun to consider the importance of 
interactive explanations and counterfactual or contrastive 
explanations. These goals can reflect curiosity, or a need to 
know: What did the AI system just do? Why didn’t the AI 
system do z? What would the AI system have done if x had 
been different? Explanation of “why something is what it 
is” entails an explanation of “why it is not something else.“ 
In other words, explanation and contrastive reasoning are 
co-implicative.

The importance of counterfactuals to explainability and 
to the automatic generation of explanations has been noted 
by XAI researchers [3, 19, 67, 79] (see [48] for a review). 
However, contrasts and counterfactuals might only be use-
ful if the user already has in mind a mental model of typical 
behavior. That is, the user needs to understand what “right” 
is before they can understand what “not-right” is or what 
“wrong” is. Pedagogical use of examples requires under-
standing a failure in order to produce benefit—otherwise 
examples may end up simply frustrating the user and foster-
ing distrust because of the salience of failures.

It has been argued that counterfactuals lack explanatory 
value because they do not provide a causal model [80]. 
This claim hinges on the assumption that an explanation is 
a resolution: an explanation has served its purpose once it 
has been delivered and understood. However, the delivery 

3.3 Principle 6: Explanation Occurs in a Context, 
Carrying with it the Needs of the User

Some people prefer explanations that refer to single, nec-
essary, or ”focal” causes and that are both simple and yet 
broadly applicable. Some people will believe explanations 
to be good even when they contain flaws or gaps in reason-
ing. Some people are not satisfied with simple, superficial 
explanations. Some people are more deliberative and reflec-
tive in their explanatory reasoning. Some people are eager 
to learn how the system works. Expert users can prefer less 
detail, presumably because they have enough knowledge 
about causal relationships in the domain that they can link 
together the focal causes. Non-expert users may need more 
detailed information for their sensemaking.

Explanations can be desired for a number of reasons, that 
depend on the goals of the user [36, 75]. This includes the 
need to self-explain, discussed above, but also pragmatic, 
ask-relevant goals: How will this AI system improve my 
performance? How much effort does it take to use this AI 
system? How can I trust it? How do I recover from the AI 
system’s mistakes? How will I know when there has been an 
anomaly or a failure? How can I repair the AI system? For 
want of satisfactory answers to these sorts of questions, the 
user might resort to trying a workaround.

3.4 Principle 7: People do not Necessarily Engage 
with Explainability Tools

It should not be taken for granted that people will engage 
with XAI. As outlined in Fig. 1 above, there was an assump-
tion of the sequence: ‘make decision’ → ‘explain decision’ 
→ ‘understand’ that people will use information from XAI 
tools to understand the AI’s decisions. However, recent 
research suggests that this assumption should be questioned. 
For example, in a study involving judgments about nutrition 
[27], explanations were about the AI system’s recommenda-
tions, but hid the actual recommendations themselves. The 
research showed that this resulted in better decisions and 
better incidental learning on their participants compared to 
giving just recommendations, and compared to giving both 
recommendations and explanations. The conclusion was 
that withholding decisions leads to higher cognitive engage-
ment and therefore better decisions.
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as an evaluation of the interactive performance of the user 
and the XAI system [64].

This said, some XAI research has focused on “real 
world” challenge cases, such as image analysis and activity 
recognition [64], air platform identification in aerial pho-
tographs [28], self-driving automobiles [49], dealing with 
cyberattacks and fake news [79, 82], controlling search and 
rescue drones [75], human-machine teaming [24, 25], and 
radiological pneumothorax diagnosis [70].

5.2 Principle 11: The Evaluation of Human-XAI Task 
Performance should Rely on Representative Users 
and Domain Experts

Also by implication from Principle 8, XAI evaluation should 
involve representative users as research participants. Work-
centered design principles suggest involving representative 
intended beneficiaries of the AI system early and throughout 
the system development process [17, 20, 21, 29, 36]. Early 
evaluation of explainability interventions may rely upon 
non-experts on simplified tasks, but the findings may not 
transfer to the real context. Furthermore, a work-centered 
approach necessarily involves domain experts in the system 
design and development activity, from the beginning and 
throughout the development process—not just a one-off at 
the initial design stage or some sort of culminating evalua-
tion. Recent XAI research attests to this [27, 75, 78].

5.3 Principle 12: Research Evaluating XAI Systems 
Needs to “Get Inside the Heads” of the Users

This Principle is about methodology in the evaluation of 
XAI systems. XAI researchers have come to recognize the 
value of cognitive task analysis to reveal learners’ mental 
models [23, 24, 28, 33, 45, 73, 75, 78]. Valuable findings 
have come from post-experimental structured interviews, 
asking the participants such questions as What problems did 
you find? and Why do you think the AI system did that? [5, 
59]. Results are the most informative about how machine-
generated explanations influence user reasoning, that is, the 
interview data help the developers make sense of the per-
formance data. Presentations on XAI projects that include 
quotations from users in post-experimental inquiry demon-
strate the kind of awareness that XAI evaluation research 
requires—awareness of the user’s reasoning as they actively 
try to understand the AI system.

of an explanation is not a terminus in the sensemaking 
process. Indeed, counterfactuals have a very important 
purpose: They show the user that exploration is possible, 
and they show how exploration can be conducted. This is 
powerful, as it supports exploration of situations when the 
AI is operating at the boundaries of its competence enve-
lope—instances that fall inside a class but nearly do not, 
and instances that do not fall outside the class but nearly 
do. Such cases show when a small change to a case makes a 
difference to the categorization.

5 The Empirical Evaluation of XAI Systems

5.1 Principle 10: The Evaluation of Human-XAI Task 
Performance should Rely on Ecologically Valid Tasks

It might be taken for granted that XAI systems need to sup-
port task-essential capabilities that people cannot exercise 
well, or at all, without computational aids [71, 75]. Recent 
XAI research has shown that an XAI system is not inter-
esting for people to use, or try to understand, if the user 
is always more skilled than the AI [74, 75, 77]. The task 
that is set before a human-AI work system has to be one 
that presents a genuine challenge. But the evaluation of XAI 
systems often involves human judgment of the acceptability 
or usefulness of algorithms. Such bench-testing may pro-
vide useful early guidance, but the benefits may not occur 
in situ. By implication from Principle 8, XAI evaluation 
should maintain the context of actual work. It is inadvisable 
to develop an explanation system by just looking at a conve-
nient proxy task (e.g., bird classification) [9]. While proxy 
tasks may arguably be ecologically relevant, explanations 
have to relate the AI tool to the context of actual tasks and 
goals tasks [4, 9, 42].

Most real-world applications of AI systems involve work 
situations bearing multiple tasks and multiple goals. Expla-
nations have to relate the AI tool to the user’s knowledge 
in the context of those goals and tasks. Much XAI research 
has assumed a one-person, one-task problem situation. 
Failure to build ecological relevance into an XAI system 
makes research easy because it sidesteps the complexity of 
actual work settings, in which a group of people using an 
AI tool may have different roles and tasks, with conflicting 
constraints to satisfy. Additionally, the ecologically sparse 
settings and tasks used in XAI system design and evaluation 
assume that the user of the AI will only be interacting with 
one program. In most real-world settings, workers juggle 
multiple computational systems. Furthermore, the user and 
the AI system act interdependently [43]. Thus, the evalua-
tion of the performance of an XAI system is to be thought of 
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interpreted as necessarily representing the official policies 
or endorsements, either expressed or implied, of AFRL or 
the U.S. Government.
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