
Psychology and AI at a Crossroads:  
How Might Complex Systems Explain 
Themselves?
ROBERT R. HOFFMAN 
Institute for Human and Machine Cognition

TIMOTHY MILLER 
University of Melbourne

WILLIAM J. CLANCEY 
Institute for Human and Machine Cognition

A challenge in building useful artificial intelligence (AI) systems is that people need to under-
stand how they work in order to achieve appropriate trust and reliance. This has become a 
topic of considerable interest, manifested as a surge of research on explainable AI (XAI). Much 
of the research assumes a model in which the AI automatically generates an explanation and 
presents it to the user, whose understanding of the explanation leads to better performance. 
Psychological research on explanatory reasoning shows that this is a limited model. The de-
sign of XAI systems must be fully informed by a model of cognition and a model of pedagogy, 
based on empirical evidence of what happens when people try to explain complex systems to 
other people and what happens as people try to reason out how a complex system works. In 
this article we discuss how and why C. S. Peirce’s notion of abduction is a best model for XAI. 
Peirce’s notion of abduction as an exploratory activity can be regarded as supported by virtue of 
its concordance with models of expert reasoning that have been developed by modern applied 
cognitive psychologists.
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Artificial intelligence (AI) systems are being applied 
ever more widely (e.g., helping corrections officers 
who have to make parole decisions helping finan-
ciers who decide about loan applications). A regu-
lation posed by the European Union (Goodman & 
Flaxman, 2016) asserts that users have a “right to an 
explanation” concerning algorithm-based systems. 
For decision makers who rely on analytics and data 
science, explainability is also a pressing issue. They 

need to be confident that their decisions are rea-
sonable when they rely on the outputs of machine 
learning systems (sometimes called deep nets or black 
boxes). People whose lives are affected by AI systems, 
and people who rely on AI systems to do their work, 
need to understand how the AI works, the mistakes 
it can make, and the safety measures surrounding 
it. Numerous computer scientists have advocated a 
requirement that AI systems be explainable, under-
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standable, transparent, and interpretable (Lipton, 
2016; Miller, Howe, & Sonenberg, 2017). This has 
motivated a number of research projects in what is 
now called explainable AI (XAI). Work in this area 
gained significant momentum from funded programs, 
including a focus on AI explainability on the part of 
the U.S. Department of Defense, beginning about 
2016 (see Gunning & Aha, 2019).
 The design of XAI systems must be fully in-
formed by a psychological model based on empirical 
evidence of what happens when people try to explain 
complex systems to other people and what happens 
as people try to reason out how a complex system 
works (Miller, 2019). Therefore, the creation of XAI 
systems necessarily invokes a collaboration between 
psychologists and AI system developers.
 Recent discussions of explainable AI have not 
much considered the role of abduction in explanatory 
reasoning (see Mueller, Hoffman, Clancey, Emrey, 
& Klein, 2019). In this article we discuss why and 
how C. S. Peirce’s notion of abduction applies to XAI 
systems. We then elaborate Peirce’s model based on 
findings about expert reasoning, which have been 
empirically derived by applied cognitive psycholo-
gists.

Explainable AI Systems
For the developers of AI systems, an explanation 
has to express a formal justification for why a system 
was architected the way it was. Developers need to 
know that the AI’s algorithm produces correct solu-
tions. When explaining their XAI systems to other 
computer scientists, system developers seek “trans-
parency” and “interpretability” (Biran & Cotton, 
2017; Doshi-Velez & Kim, 201; Lipton, 2016). It is 
important to note that these are defined formally, not 
used in the ordinary senses of the words. A system 
is interpretable if the algorithms can be modeled by 
some other, simpler and well-understood formal sys-
tem. Hence, the explanations generated by XAI sys-
tems have taken such forms as numerical matrices of 
feature weights, decision trees, rule hierarchies, and 
Bayesian probability networks (see Gunning, Vorm, 
Wang, & Turek, 2021; Mueller et al. 2019).
 This is fine, but a formal analysis that works for a 
computer scientist will usually make no sense to us-
ers. In some XAI research it was initially assumed that 
a good explanation for a computer scientist would 

serve as a good explanation for users. First attempts 
to demonstrate the effectiveness of formalist expla-
nations (for improving the user’s performance) had 
mixed results but showed that “explanations are more 
helpful when an AI is incorrect and are particularly 
valuable for edge cases” (see Gunning et al., 2021, 
p. 8). This meant that formal interpretability is not 
enough (see also Chowdhury & Lake, 2018).
 Prospective adopters and users need to know 
that the AI will work well when it is deployed. Users 
need to understand how the AI works, expressed in 
everyday language or easily understood graphics (see 
Krause, Perer, & Bertini, 2016). Users want AI sys-
tems to provide explanations that accord with their 
current context and that increase trust in and under-
standing of the AI system. This includes information 
about the features that a classifier uses, about how the 
classifier works, and about how certain the AI is its 
determinations (Lim & Dey, 2009).
 In other words, what counts as a good explana-
tion depends on the intended beneficiary of the ex-
planation and their context and goals.
 The initial scheme for research that was intended 
to evaluate the performance of XAI systems is pre-
sented in Figure 1 (see Mueller et al., 2019).
 This model was a useful starting point for de-
veloping experimental designs and procedures for 
empirical evaluation, especially since it showed some 
of the things that would have to be measured (the 
dark nodes in Figure 1). However, the model does 
not take into account the findings from psychological 
research on how people explain complex systems to 
other people (see Hoffman, Klein, & Miller, 2011; 
Klein, Hoffman, & Mueller, 2019; Klein, Hoffman, et 
al., 2021). Nor does it take into account the challenges 
that were discovered in the attempts, dating to the 
1980s, to create intelligent tutoring systems (ITSs; 
see Clancey & Hoffman, 2022). The XAI model 
was essentially spoonfeeding: The AI generates an 
explanation and delivers it to the user, the user un-
derstands it, then the performance of the human–AI 
system improves. At least, this was the researchers’ 
working assumption.
 Whether considered from a formal perspective 
or a lay perspective, the avowed goal is for the XAI 
to provide correct, understandable, and sufficient ex-
planations. (For reviews, see Biran & Cotton, 2017; 
Doshi-Velez & Kim, 2017; Gerlings, Shollo, & Con-
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stantiou, 2021; Mueller et al., 2019; Walton, 2011.) It 
is generally agreed that “enhancing the explanatory 
power of intelligent systems can result in systems 
that are easier to use, and result in improvements in 
decision-making and problem-solving performance” 
(Nakatsu, 2004, p. 575).
 This article presents a synopsis of what C. S. 
Peirce said about abductive reasoning, from logical 
and psychological perspectives. A reconciliation of 
the logical and psychological perspectives on abduc-
tion provides a definition that applies to explainable 
AI. We then expand that Peircean model by noting 
its concordance with what has been discovered in 
research on the reasoning of experts.

Abduction in Philosophy
Abduction as the process of explanation has been 
widely discussed and cited as a central aspect of criti-
cal thinking, cognitive flexibility, fluid intelligence, 
and creativity (e.g., Douven, 2011a, 2022; Moore & 
Malinowski, 2009). Abduction has been defined as 
an accomplishment, an ability, a skill, and an amal-
gam of component skills such as evaluating evidence, 
forming mental models, and recognizing cues. Many 
scholars have discussed hypothesis formation and 
testing as the basis of scientific reasoning (e.g., 
Bruner, 1985; Collins, 1985; Glaser, 1984; Pfeiffer, 
Feinberg, & Gelber, 1987; Hempel, 1965; Nummedal, 
1987; Selz, 1935).

 The logical concept of abduction might actually 
be traced to Aristotle. In Prior Analytics (69a 20ff; 
Smith, 1989), Aristotle discussed what he called “re-
duction”: the transformation of the subject–predi-
cate relations in the major and minor premises of a 
syllogism (e.g., “Socrates is mortal,” “Socrates is a 
man”), so that each of the four basic types (or “fig-
ures”) of syllogisms could be expressed as a type in 
which the conclusion is an explanatory rule, or we 
might say an assertion about a class (e.g., “All men 
are mortal”). Despite this historical precedent, most 
discussions attribute the concept of abduction to 
the early American philosopher–scientist Charles 
Sanders Peirce.
 In classical formal logics, deduction and induc-
tion are completely defined over sets of assertions, 
one of which must be a generalization (that is, an as-
sertion about a class). The standard forms are pre-
sented in Table 1.
 In contrast, abduction depends on propositions 
from the reasoner’s knowledge—propositions that 
come from beyond the given rule and the given obser-
vations. Hence, abduction is not the same as induc-
tive enumeration. Nevertheless, to philosophers it is 
a form of inference (Douven, 2011a; Harman, 1965; 
Lipton, 2004; see also Hempel, 1965). A proposed 
explanation is correct if the observed circumstance 
would necessarily occur. In this view, abduction 
would be distinct from both deduction and induc-

FIGURE 1. The initial XAI process model
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tion. Indeed, it would be a third basic or fundamental 
type of inference. One might say something like:

If H (hypothesis) is a correct model of the system 
of interest, then the assertions D (facts) are logically 
consistent with H’s structure/processes, i.e., D is 
modeled by H; H models D.

This would retain abduction in the province of clas-
sical logic. But Peirce described logical inference in 
a way that differed from the logics of Aristotle and 
Hume, and he was not consistent in his writings on 
this topic (see Beckwith, 2018). He did not seem to 
mean that abduction was a third classical type (in ad-
dition to deduction and induction). Rather, he argued 
that one single type—that a given case or set of cases 
follow a rule—covers the two classical forms.
 Figure 2 demonstrates the difference between de-
duction, abduction, and induction. Deduction starts 
with some generalized knowledge (i.e., the rule: “All 
men are mortal”) and an instance (“Socrates is a hu-
man”) and makes an inference about that instance 
(“Socrates is mortal”). Induction, on the other hand, 
takes instances (usually many instances) and a prop-
erty about the instances and forms a rule that would 
apply to future cases. For example, if we see many 
people (instances) and observe that they are all mor-
tal, we infer that all people are mortal. Thus, it can be 
said that induction is the same as generalization. To 
Shank (1998, pp. 847–848), abduction is “rendering 
what might be thought of as a unique experience into 
an instance of a more general phenomenon.”

 There are particular problems for logic here. For 
example, since any given case will have an unbounded 
number of hypothetical features (potential premises) 
about which one might form rules, one can have an 
unbounded number of rules (see Douven, 2011a). 
Another problem is that the premise in deduction 
(the given rule) is itself the result of induction. A 
third is that abduction is question-begging because 
it entails a miracle (i.e., the spontaneous creation of 
a hypothesis; see Niiniluoto, 1999). While these are 
problems for logic, they do not seem to have been a 
concern for the Peirce the pragmaticist.
 Peirce referred to abduction as “hypothetic infer-
ence”—the inferring of a plausible explanation for an 
observed circumstance. One starts with an interesting 
event or phenomenon and conjures (perhaps created 
de novo or perhaps previously derived using induc-
tion) to make an inference about that instance (one 
would assume, an inference about causation). Recent 
philosophy has maintained the close linkage to clas-
sical logic in treatments of abduction. For example, 
Josephson and Josephson (1995) described abduc-
tion in a formal way (see also Aliseda, 2007; Haig, 
2009; Minnameier, 2010):

D is a collection of facts, observations, or “giv-
ens,”

H explains D, that is, H would, if true, explain D,

No other hypothesis can explain D as well as H 
does,

Therefore, H is probably true.

TABLE 1. Standard Syllogism-Style Representations of Deduction and Induction

Deduction

Rule: All instances of x belong in Class X.

Observation: Q is an instance of x.

Inference: Q belongs in Class X.

All humans are mortal.

Socrates is a human.

Therefore

Socrates is mortal.

Induction

Observation: Instance Q of x belongs in Class X.

Observation: Instance R of x belongs in Class X.

Observation: Instance S of x belongs in Class X.

Inference: All instances of x belong in Class X.

Socrates is human and a mortal.

Pliny the Elder is human and a mortal.

Plato is human and a mortal.

Therefore

All humans are mortal.
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This final proposition supposes the rejection of all 
but one hypothesis. Abduction is commonly defined 
as “inference to a best explanation.” This is reflected 
in the third proposition in the Josephson and Min-
nameier formalism. Peirce’s work is precursor to this 
notion, but it is not strictly his definition of abduc-
tion, and the identification of the two poses dangers 
for philosophy of science (see Douven, 2011b; Tha-
gard, 1978). (For reviews, see Niiniluoto, 1999; Ma-
cauliffe, 2015.)
 As we now discuss, the concept of abduction also 
has a legacy in the field of AI.

Abduction in the Field of Artificial Intelligence
If abduction involves creativity, the discovery of new 
ideas, and insight, could it be formalized and imple-
mented computationally? In the field of AI, abduc-
tion has been considered a form of induction, as in 
case-based reasoning (see Lenat, 2013, p. 54). How-
ever, a number of AI researchers have not identified 
abduction with induction, and have been investigat-
ing the process of abductive reasoning, for topics 
such as fault diagnosis and medical diagnosis. This 
led to mechanizations and formalizations of aspects 
of the abductive reasoning process that clearly dis-
tinguish it from induction and gave it an empirical 
backing (see Pople, 1973).
 Abduction has been referred to as the process 
of inferring causal processes based on observations, 

for example, in the literature on medical diagnostic 
systems (see Finin & Morris, 1988). One of the best 
examples of the implementation of abductive reason-
ing is that of Fraser et al.’s (1989) project to develop 
an ITS for antibody identification in immunohema-
tology. They conducted knowledge elicitation inter-
views with a domain expert. The interviews focused 
on the recall of critical incidents in which an initial 
diagnosis proved wrong. The researchers’ primary 
intent was to pin diagnostic errors on one or another 
cognitive bias (e.g., overestimating the likelihood of a 
given hypothesis). (While the researchers were able 
to do this, they also learned that the expert was aware 
of possible biases and deliberately performed checks 
on her probabilistic reasoning by such means as ex-
amining base rates.) The expert’s process of infer-
ring a diagnosis based on the available evidence was 
referred to as abduction, but otherwise the concept 
of abduction (as an act of inference) played no role in 
the research. That said, the description of the expert’s 
process for testing hypotheses fits with the Peircean 
model (i.e., explicit check on the lab technician’s 
process for performing a test to develop converging 
or disconfirming evidence).
 ITSs have the same goal as XAI: to support the 
sensemaking process. An ITS that comes close to 
the Peircean model is an ITS for physics problem 
solving developed by Makatchev, Jordan, and Van-
Lehn (2004a, 2004b). Given that learner’s mental 

FIGURE 2. The difference between deduction, induction, and abduction
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models of complex systems are likely to be incom-
plete and inconsistent (diSessa, 1993, 2018), the 
ITS of Makatchev et al. was intended to help stu-
dents recognize and correct their misconceptions. 
In the implementation, student essays about phys-
ics problems were rendered as sets of propositions. 
“The student essay is viewed as a fragmentary, in-
complete, and possibly incorrect proof. Our task is 
to complete that proof insofar as possible” (p. 193, 
Makatchev, Jordan, & VanLehn, 2004b). The proofs 
were coherent arguments that were consistent with 
students’ mental models. In the implementation, it 
was the ITS (not the learner) who engaged in abduc-
tive reasoning, inferring the “best proof ” in order to 
guide the tutoring process. The implementation ap-
proximates the Peircean scheme in certain respects. 
First, the implementation included plausibility analy-
sis (by assigning weights for alternative explanations). 
(See row 3 in Table 2, below.) Second, although it 
might be asserted that abduction involves inferring 
explanations from observations, it might also be said 
that observations are made as a consequence of the 
explanations. (See row 5 in Table 2, below.)
 Although the work of Makatchev et al. fits the 
Peircean model in these ways, it is not entirely clear 
what is “abductive” about the proofs. Granted that 
the research is aimed at a readership of computer 
scientists, it often seems unsatisfyingly distanced 
from the psychology of the matter. As was argued 
even in the 1990s, it is potentially misleading to label 
students’ prior conceptions as misconceptions. “Stu-
dents have often been viewed as holding flawed ideas 
that are strongly held, that interfere with learning, 
and that instruction must confront and replace. . . . 
This view overemphasizes the discontinuity between 
students and expert scientists” (Smith, diSessa, & 
Roschelle, 1993, p. 116). Indeed, one might check by 
asking whether the student actually believes the “mis-
conceptions.” The assumption of the Makatchev et al. 
proof method is that the misconceptions are student 
beliefs rather than bridges constructed by the tutor, 
that is, supplied by the model builder/programmer.
 The term abduction is sometimes invoked in re-
search on intelligent systems but actually does little 
heavy lifting, either in cognitive modeling or in im-
plementations. For example, in the field of machine 
learning, Mooney (2000) defined abduction as the 
process of revising a knowledge base in order to fit the 

data. Abduction was defined formally as the induc-
tive inference across multiple cases of an explanatory 
hypothesis (cause–effect relation), such that its con-
junction with observations of a particular case is true, 
and its conjunction with background knowledge is 
also true. Mooney’s linkage of abduction to induction 
accords with Peirce’s assertion that abduction “par-
takes of the nature” of induction, when an inference 
is taken beyond the given observations (Peirce, 1878).
 A distinction must be drawn between abduction 
(of a sort) that is the program’s process of construct-
ing model of student’s reasoning and abduction by 
the student in the sense of producing the observed 
behavior. In 1970s and most of 1980s, the ITS com-
munity equated the program’s model of the student’s 
knowledge with the student’s knowledge. Although 
that may be functionally useful for implementation 
and testing, it is on shaky grounds psychologically.
 Overall, although we see elements of the concept 
of abduction in the ITS work—abduction as Peirce 
described it—there is still a long way to go. The fuzzi-
ness of the concept of abduction manifests itself in 
the ITS literature. Indeed, computer scientists have 
been at liberty to propose “new forms of abduction” 
(e.g., Stickel, 1991) that are not obviously tied to any 
Peircean notion. We see in the AI literatures some 
scattered elements of the full Peircean model. In-
deed, one might say that abduction is a convergence 
of some of the fundamental problems of the field of AI 
and its application to human learning and reasoning.

Peirce the Psychologist
From 1867 to 1908, Peirce discussed abduction in 
different contexts and with different focus points. 
Peirce’s discourses on abduction dealt not only with 
the logical view (representing abductive inferences 
formally) but also with a psychological view (Peirce, 
1891b, 1903a). To Peirce, the match between a set of 
data and a preferred explanation is more plausible 
than the match to other explanations, and so we 
accept the preferred one as the likely explanation. 
More than this, abduction involves justification. A 
hypothetic inference is maintained until contradicted 
by experience or until experience suggests a better 
explanation (e.g., simpler, more general, more plau-
sible). Although abduction can be described as if it 
were a single, punctuated act of reasoning, like the 
making of a logical inference from given premises (as 
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in Figure 2), Peirce the psychologist regarded ab-
duction as an exploratory discovery process involv-
ing the observation of something that is surprising, 
qualitative reasoning ( judgments of plausibility), and 
insight (Bellucci, 2015; Douven, 2011a). Peirce was 
quite explicit about this, using the classical form:

The surprising fact, C, is observed;

But if A were true, C would be a matter of 
course,

Hence, there is reason to suspect that A is true. 
(Peirce, 1903b)

Thus, the model presented in Figure 2 is too simple to 
capture the process of abduction as Peirce described 
it. Table 2 summarizes what Peirce said about ab-
duction in his various writings (see also Fann, 1970; 
Niiniluoto, 1999).
 It is noteworthy that the requirements in Table 2 
are consistent with the logic-inspired views of Har-
man (1965), Josephson and Josephson (1995), and 
Lipton (2004), although the requirements go well 
beyond their logical expressions. The requirements 
in Table 2 are also consistent the psychology-inspired 
view of Lombrozo (2012) based on studies of explan-
atory reasoning. This suggests a reconciliation of the 
logical view and the psychological view.

Reconciling the Logical and the Psychological
There is a tendency for writing on abduction either 
to define it philosophically in terms of other fuzzy 
concepts (e.g., critical thinking, explanation) or to 
define it logically as a form of inference based on a 
set of premises. However, there is an alternative, in 
which abduction is understood as exploratory mod-
eling, a constructive reasoning activity that is highly 
dependent on knowledge. “The process of explaining 
recruits prior beliefs and a host of explanatory prefer-
ences, such as unification and simplicity, that jointly 
constrain subsequent processing” (Lombrozo, 2012, 
p. 260). The reliance on propositions that are exter-
nal to the syllogism (no matter how many premises 
it begins with) is central in the Peircean definition 
of abduction.
 Referring to row 1 in Table 2, the reasoner’s 
motivation for creating a model is that the observed 
event or phenomenon is interesting or surprising. 
The observed event or phenomenon is at least non-
trivial; that is, it is complex and involves interactions 
whose properties (structure and behaviors) are not 
sufficiently understood. This regards abduction as 
an accomplishment, an exploratory activity that be-
gins with some information (e.g., data, assumptions, 
hypotheses, partial models) about some system of 

TABLE 2. Peircean Psychological Model of Abduction

Process Requirements

1.  Observation of an event or 
phenomenon.

The observed event or phenomenon is interesting or surprising.

The perception of the event or phenomenon (i.e., categorization) hinges on the 
reasoner’s knowledge and concepts.

2.  Generation of one or more 
possible explanations for some 
observed event or phenomenon.

The understanding of the event or phenomenon hinges on the reasoner’s 
knowledge and concepts. Abduction partakes of the nature of both creativity and 
informed guessing (“guesses guided by reasons”; Peirce, 1878, p. 479).

3.  Judging the plausibility of the 
candidate explanations.

The judgment can be but is not necessarily based on considerations of necessity 
and sufficiency.

The judgment can be but is not necessarily based on the estimation of 
probabilities or likelihoods.

4. Resolving the explanation. The plausibility judgment results in a determination that an explanation is viable.

5. Extending the explanation. The determination is always tentative, that is, subject to disconfirmation by further 
inquiry, even though there is an assumption that further instances will conform to 
the explanation.

Note. Discussions in the literature often refer to simple examples of abduction, but it is clear especially in Peirce’s writing that there is an 
assumption that the observed event or phenomenon is at least nontrivial, that is, it is a complex event or phenomenon (i.e., it is a system of 
interactions whose properties [structure and behaviors] are not sufficiently understood).
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interest, assimilated into an initial yet incomplete 
understanding (diSessa, 2018), producing a more 
complete model of that system, one that is consistent 
with the given information.
 The psychological perspective on Peirce’s notion 
of an explanation for a surprising event conjures Witt-
genstein’s argument about the role of tacit knowledge 
in language understanding (Wittgenstein, 1953). A 
phenomenon or event could not be a surprise unless 
the observer already had in mind some expectation, 
understanding, or mental model of the phenomenon. 
It follows that a surprise is not just an act of recog-
nition (of a disconnect between a tacit model and 
experienced phenomenon). Rather, there must be a 
perspective shift or some consideration of the notion 
that there might be more than one possible model. 
Reasoning about possible models involves a plausibil-
ity judgment.

 Figure 3 presents a process model version of the 
Peircean process described in Table 2. In the spirit of 
Peirce’s writings, this describes the process of “rea-
soning from surprise to inquiry,” as he phrased it in 
a letter written in 1905 (Bellucci, 2015).
 To Peirce, abduction involves active exploration, 
the empirical assessment of competing hypotheses 
(Capaldi & Proctor, 2008). Abduction is an activity 
that is extended in time, having its own structure and 
dynamics. It is not a punctuated act of reasoning like 
making a logical inference. But the classical forms 
(deduction and induction) are involved in Peircean 
abductive exploration. Referencing row 5 in Table 
2, this is where abduction involves deduction and 
induction as integral to the process of empirical 
evaluation. In some of his discussions of abduction 
Peirce considers abduction as a hybrid, that is, abduc-
tive reasoning “partakes of the nature of induction” 

FIGURE 3. A process model representing Peircean abduction
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(Peirce, 1878, 1903c). In other words, the classical 
forms of reasoning can be thought of as stages in ab-
ductive scientific research (Bellucci, 2015; Douven, 
2011b).
 The viability of the Peircean model presented in 
Figure 3 is reinforced by is concordance with recent 
research in two areas of applied cognitive psychology: 
research on the teaching of critical thinking skills and 
research on the reasoning of experts, spanning the 
poles of a proficiency continuum.

Evidence About the Peircean Model of Abduction:  
Research on the Training of Critical Thinking Skills
Peirce referred to the phenomenon in which an ex-
planation pops out in the reasoner’s awareness: “The 
suggestion comes to us like a flash” (Peirce, 1891a). 
Is that moment to be regarded as an act of inference? 
If so, it is certainly not of a classical form. To Pierce 
the abductive derivation of a rule is a creative act, an 
insight (Peirce, 1903b).
 Some researchers have demonstrated success at 
teaching critical thinking skills defined so as to ac-
cord with the concept of abduction (e.g., Schank, 
2011). van Dongen, Schraagen, Eikelboom, and te 
Brake (2003) conducted critical thinking training 
by using an ITS system that encouraged trainees to 
list multiple alternative hypotheses and then list both 
the confirming and disconfirming evidence for each 
hypothesis. The manifest purpose of the training tool 
was to mitigate confirmation bias, but the tutoring 
involved practice on deciding which of a set of alter-
native hypotheses was the better hypothesis.
 Another study that comes close to implementing 
the Peircean concept of abduction is one by van den 
Bosch and de Beer (2007) on training for decision 
making. The researchers described two elements of 
critical thinking:

Building a story. Explaining a situation, inte-
grating assumptions and uncertainties. This 
corresponds to rows 1 and 2 in Table 2.

Testing and evaluating a story. Identifying 
incomplete and contradictory information; 
evaluating the plausibility of the story. This cor-
responds to rows 3 and 4 in Table 2.

 Tests and measures of critical thinking and ex-
planatory reasoning have tapped selected aspects of 
abductive reasoning (e.g., recognition-primed deci-

sion making, plausibility judgment) but do not evalu-
ate reasoning quality across all of the defining aspects 
of abductive reasoning, and apparently little work 
has been done on the skill or capacity for generating 
plausible hypotheses in the first place (Lombrozo, 
2012).
 Peirce’s concept of abduction, and most of the 
secondary literature on it, has orbited the topic of sci-
entific reasoning (e.g., Hanson, 1958; Peirce, 1878). 
But another new empirical source is the research on 
the psychology of expertise.

Abduction as Sensemaking by Domain Experts
Using methods of observation and cognitive task 
analysis, applied cognitive psychologists have stud-
ied the reasoning of experts in many diverse domains 
and professions (Ericsson, Hoffman, Kozbelt, & Wil-
liams, 2018; Hoffman, 2007; Klein, Orasanu, Calde-
rwood, & Zsambok, 1993; Ward, Schraagen, Gore, 
& Roth, 2019). A leading model of expert reasoning 
accords well with Peirce’s model of scientific abduc-
tion and also adds some specifications to it.
 Research has shown that in most cases, the expert 
recognizes a situation as a familiar one and immedi-
ately engages in appropriate actions. This is called 
recognition-primed decision making (Klein, 1989). 
There is no deliberation over alternative hypotheses, 
and indeed, in many situations (e.g., firefighting, sur-
gery) there is no time for deliberation.
 The other scenario is one that is concordant with 
Peircean abduction. The data–frame model of sense-
making (Klein, Phillips, Rall, & Peluso, 2007) posits 
that there is some sort of trigger, when the expert ob-
serves something that is surprising, something that 
does not map well to a known pattern. The expert 
forms an initial mental model (i.e., inference to a plau-
sible explanation) and then engages in an empirical ex-
ploration, in which the reasoner seeks new data, infers 
possible relationships, tracks anomalies, gauges data 
quality, and looks for evidence to support and refute 
the explanation. The data–frame process model maps 
clearly onto the description presented in Table 2 and 
Figure 3. This convergence of evidence and models 
bolsters one’s confidence in proposing that a valid 
consensus model of abduction has been adduced.
 Peirce’s context, and that of the research on ex-
pertise, involves a focus on how people understand 
things they observe in the world, as it were (e.g., in 
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“pure” physics, the kinetics of gasses). But Peircean 
modeling can be used now to describe the process 
of creating and empirically evaluating explanatory 
hypotheses about how an AI system works.

A Conceptual Framework for Explainable AI
We present a conceptual framework specific to the 
methods of explainable AI based on the Peircean 
model of abduction. The key point is that people 
who are involved in an interaction with an XAI sys-
tem are abducting to understand what, how, and why 
the AI does what it does, and not just make sense of 
the world that is being observed or controlled (e.g., 
forecasting the weather is guided by the outputs of 
computational models). The process of sensemaking, 
or self-explaining a complex system, is deliberative 
and effortful (Chi, Roy, & Hausmann, 2008; Chi, 
Siler, Jewong, Yamauchi, & Hausmann, 2001; Klein 
et al., 2019; Klein, Hoffman, et al., 2021; Renkl & 
Eitel, 2019). The process of explaining often takes the 
form of a dialog in which an explainer and a learner 
collaborate, explore, and co-adapt (Clancey, 1987; 
Walton, 2011).
 First, we define the term explainable AI:

Explainable AI is the development of AI sys-
tems capable of engaging in meaningful interac-
tions with people to support their abductive 
reasoning.

Explainable AI has the purpose of helping peo-
ple develop good mental models of how the AI 
system works and when, why, and how it fails.

Explainable AI requires that the user–AI rela-
tionship be one of interdependence: The user 
learns and benefits from the AI, but addition-
ally, the XAI improves based on the actions 
and feedback of the user, such as improving 
its ability to adjust inputs or eliminate certain 
hypotheses.

It is important for those who are researching and 
building explainable systems to think beyond the 
initial spoonfeeding paradigm (see Figure 1), which 
is simply about automatically generating “one size 
fits all” statements. Statements such as “This is a bird 
because it has features a, b, and c of other birds” can 
to some extent be useful for determining when and 
how a model might fail or succeed and can be use-
ful in building initial mental models. But for genuine 
understanding of AI systems, spoonfed explanations 

can leave a wide epistemic gap that users have to 
bridge. Indeed, spoonfeeding can actually impede 
sensemaking. Recent experiments indicate that if 
someone already agrees with an answer from an AI 
model, they sometimes ignore the explanations, and 
if they disagree, they do not always engage with the 
explanations (Gajos & Mamykina, 2022).
 So if explainable AI is not about producing expla-
nations, what should it be about? It should be about 
providing tools that support people to realize and 
specify their mental model of a system and explore 
the behavior of the AI, working collaboratively as well 
as individually. This includes understanding why the 
AI made particular decisions (so-called local explain-
ability) and understanding more generally how the AI 
works (so-called global explainability). For example, 
in many current XAI systems for object recognition, 
local explanations take the form of “heat maps” that 
use rainbow colors to highlight the areas that were 
most heavily weighted by an algorithm. (Computer 
scientists refer to these as showing “saliency,” or what 
the AI is “seeing” or “paying attention to.”) In some 
XAI systems (e.g., for the control of autonomous sys-
tems), local explanations take the form of decision 
rules, which are often cryptic and complex. (For a 
review, see Mueller et al., 2019.)
 The Peircean model of abduction (see Table 2 
and Figure 3) entails a conceptual framework for ex-
plainability requirements for XAI tools, presented in 
Table 3. These requirements offer distinct challenges 
to computer scientists.
 A glance at research in XAI will show that sup-
port for abduction is not the conceptual framework 
of most projects. Current XAI systems fall flat on 
rows 1 and 2 in Table 3. Some XAI systems preempt 
exploration by having some sort of window always 
open that shows some information about a particu-
lar decision or classification (e.g., similar instances, 
lists of features, a saliency map, a decision rule). If 
the AI does something that is surprising, this same 
basic display is all the user has to go on. Currently, 
much XAI research is focused on row 3, plausibility 
judgment. Such judgments express the justification 
that computer scientists present to other computer 
scientists, to explain “why we built it that way.” This 
is for good reason: The complexity and opacity of 
AI models means that revealing reasons is a difficult 
technical challenge. However, this does not mean 
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that the other important steps in the model can be 
safely neglected. XAI requires good tools to support 
understanding rather than the automatic generation 
and presentation of “explanations,” which does not 
go far enough in supporting abductive reasoning in 
many scenarios.

Prospects
We know that concepts of abduction can be imple-
mented. Makatchev, Jordan, and VanLehn (2004a, 
2004b) demonstrated that an ITS can generate plau-
sible hypotheses about students’ reasoning. This is 
suggestive of the possibility of supporting people’s 
abductive reasoning about how an AI system works 
and how it fails. Mooney (2000) implemented ab-
duction in the form of a process that would mod-
ify its knowledge base to make it consistent with 
evidence. This accords with the Peircean notion 
of plausibility judgment and the resolution of ex-
planations (see Table 3, rows 3 and 4). The field 
of ITSs has demonstrated that it is possible for a 
computer system to engage in meaningful interac-
tion with learners and facilitate their sensemaking. 
Clancey and Hoffman (2022) reviewed a number 
of ITSs, listing some specific capabilities that have 

been implemented and evaluated and that align with 
the requirements for AI systems that would support 
abductive reasoning (see Table 3, rows 3, 4, and 5). 
For example, an ITS can promote understanding 
by enabling the trainee to make rapid comparisons 
of cases (exploration). An ITS can help the trainee 
reflect on experience to integrate fragmentary gen-
eral and situated knowledge.
 Clearly, there is no single clear or easy path to the 
computational modeling of the full process of explor-
atory sensemaking as Peirce described it. It might 
be worthwhile to pursue this, to develop intelligent 
systems that support people to perform rigorous ab-
ductive reasoning, and to allow for the assessment of 
abductive reasoning as a learnable skill.
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