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The process of explaining something to another 
person is more than offering a statement. Explaining 
means taking the perspective and knowledge of the 
Learner into account and determining whether the 
Learner is satisfied. While the nature of explana-
tion—conceived of as a set of statements—has been 
explored philosophically and empirically, the process of 
explaining, as an activity, has received less attention. 
We conducted an archival study, looking at 73 cases 
of explaining. We were particularly interested in cases 
in which the explanations focused on the workings of 
complex systems or technologies. The results generat-
ed two models: local explaining to address why a device 
(such an intelligent system) acted in a surprising way, 
and global explaining about how a device works. The ex-
amination of the processes of explaining as it occurs in 
natural settings revealed a number of mistaken beliefs 
about how explaining happens, and what constitutes an 
explanation that encourages learning.

Keywords: sensemaking, explaining, artificial 
intelligence

INTRODUCTION
From time to time, we all need to help another 

person understand why something happened, 
why a machine behaved in an unexpected man-
ner, or even how a complex device works. When 
we explain, we don’t want to fashion an expla-
nation that is too detailed, or one that lacks the 

necessary detail. How does that happen? How 
are we able to effectively explain something to 
another person? Consider an imaginary exam-
ple of what might happen if you are driving and 
relying on a navigator in the passenger seat.

Navigator/Driver Dialog

The navigator is using a GPS aid embedded in 
a smart phone. As the driver, you think you 
need to continue going straight at the next 
intersection, but the navigator tells you, “Turn 
left here at the light.” You might say, “Left?” 
and your tone of voice, in this one word, 
tells the navigator that you are surprised 
and perhaps skeptical. A good navigator 
will then try to explain to you the reason: 
the GPS is showing a red line ahead, but 
instead of giving these details, knowing the 
turn is coming up, the navigator simply says, 
“Traffic,” perhaps pointing to the cell phone. 
And you are satisfied.

The navigator knows that you are surprised 
and knows that there is a need to rapidly explain 
so that you understand. In this dialog, you, as 
the driver, are the Learner and the navigator is 
the Explainer.

Currently, we can’t have this type of dialog 
that is central to coordination, directly with our 
GPS devices, “Left?” “Traffic.” But perhaps we 
can get closer to these exchanges if we appreci-
ate how explaining happens.

This imaginary example was not part of the 
corpus of actual cases we examined, but we 
use this example at various points in this article 
because it is brief, clear, and easily remembered.

Our objective in the work reported here was 
to explore the nature of explaining, as distinct 
from generating explanations. Explanations are 
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statements and have properties that have been 
explored philosophically and empirically. In 
contrast, explaining as an activity has received 
less attention.

The process of explaining occurs in various 
contexts including interpersonal dialog and 
interaction with technology. One of those con-
texts is the field of Artificial Intelligence (AI). 
The challenge of explaining how AI systems 
work has been a long- standing one, as seen 
in the pioneering works of William Swartout 
and others (Clancey, 1983, 1987, McKeown 
& Swartout, 1987; Swartout & Moore, 1993). 
They argued that an AI system needs to have 
within it an explainable model of the task, and 
also, a model of the user. The intelligent tutor-
ing literature (e.g., Clancey, 1987; Forbus & 
Feltovich, 2001) describes a variety of efforts to 
capture the Learner’s perspective and adapt the 
training accordingly.

In contrast to current Deep Net and Machine 
Learning systems, the early explainable sys-
tems had easy access to symbolic notation of 
knowledge, possibly making it easier to create 
human- meaningful accounts of the workings of 
the system. Yet many of those explanation sys-
tems failed to achieve what they had promised. 
Today’s AI systems use calculational mecha-
nisms that are much more opaque and may take 
substantial inferencing to be made sense of, and 
so the challenge is even greater.

To some extent, a similar argument could be 
made about how humans think about the rea-
soning of other humans. Nevertheless, Pearl 
(2018) notes that even though we have such a 
meager understanding of how our minds work, 
and how other people think, we can still com-
municate with each other, learn from each other, 
guide each other, and motivate each other. We 
can dialog in a language of cause and effect. 
In contrast, we cannot dialog with intelligent 
machines, and one reason is that they do not 
“speak” meaningfully about cause and effect. 
People communicate via a language of reasons, 
which is different from the AI language of vari-
ables and weights and correlations.

Looking across the broad and deep litera-
tures, there are many divergent concepts and 
stances about what constitutes causation and 
causal reasoning. In philosophy, for example, 

some argue that an explanation is the output 
of a process that generates a “literal” descrip-
tion of reality whereas others see causal attri-
butions and descriptions as a social construct 
(e.g., Collins, 1992). In the work reported here, 
we take no stance on the nature of causation. 
Rather, our focus is on the empirical description 
of causal reasoning.

Also, in philosophy there is a focus on 
the qualities of explanations that make them 
“good.” This is taken largely from the perspec-
tive of philosophy of science, and thus includes 
such criteria as accuracy and completeness. We 
know from empirical research that such crite-
ria do not map well onto human reasoning. For 
reviews, see Hoffman et al. (2011) and Hoffman 
et al. (2017).

In a review of the literature, Mueller et al. 
(2018) examined 743 articles, papers, and 
books having to do with explanation, covering 
a range of disciplines but focusing on reports 
of attempts to evaluate AI systems, including 
intelligent tutoring systems. This review found 
that while there was ample material on the pro-
cess of generating explanations, the process of 
explaining has not been much studied. There 
are exceptions (e.g., Goguen et al., 1983), but 
our literature review found that explanations are 
often taken to be context- free and purpose- free 
statements, which can be evaluated in terms of 
factors such as clarity, comprehensiveness, and 
accuracy. In contrast, “explaining” is an inter-
active activity that involves the Explainer and 
at least one Learner. It is interactive in the sense 
that, to be effective, the process of explaining 
needs to take the Learner’s perspective into 
account.

As part of the DARPA Explainable Artificial 
Intelligence (XAI) program, we conducted a the-
matic review of what happens when a person tries 
to explain the reasons for a decision or action in 
“real- world” settings, especially to explain the 
workings of a device to another person. Our goal 
for this study was to model how people engage in 
the process of explaining to others. Additionally, 
such a model might help the researchers seeking 
to enhance the explainability of AI systems. The 
study described in this paper relied on 73 tex-
tual accounts of explanation and did not include 
observations or interviews. We collected textual 
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examples from books, magazines, newspapers, 
and social media, of cases in which people created 
written documents in an attempt to explain events 
and systems to readers. Our approach can be 
regarded as a way of expressing thematic analysis 
as described by qualitative researchers, for exam-
ple, Grounded Theory (Corbin & Strauss, 1990).

The literature review performed by Mueller 
et al. (2018) found that most of the “theories” of 
explanation are narrowly focused on one of two 
contexts—teaching school children or philosophy 
of science (e.g., Toulmin’s model of argumenta-
tion, 1958; Toulmin et al., 1984). Further, most 
things that would qualify as theories of explana-
tion are simply taxonomies of properties, modes, 
or goals of explanation.

Existing psychological research on explanation 
typically does not invoke a process model, but 
asks questions such as “does explanation involve 
causal reasoning” or “do different modes or types 
of explanation work better” or “how does simi-
larity of an explained cause impact the effective-
ness of an explanation” (see extensive work by 
Lombrozo, 2006, 2010, 2011).

Most of this research is based solely in the lab-
oratory, using contrived situations and nonexperts 
(e.g., school children). The goal of the present 
study is to understand explanation “in the wild.”

METHOD
Corpus of Examples

We identified and examined 73 examples, 
some as complex as the Air France 447 disaster, 
others much simpler. We attempted to learn about 
the process of explaining from these examples. 
None of the examples came from direct observa-
tion of dialog in which one person attempted to 
explain the case to another person. Twenty- one of 
the examples came from Degani’s (2004) descrip-
tions of automation failures. Other cases came 
from news media or other published accounts 
(16), or from interviews we had conducted for 
other projects (9). A small number of explanations 
(2) were from the lead author’s personal experi-
ence. Twenty- five of the examples came from the 
Reddit website “Explain Like I’m Five,” which 
attempts to explain complex phenomena for unso-
phisticated audiences [https://www. reddit. com/ r/ 
explainlikeimfive/].

The cases included intelligent systems (e.g., 
IBM’s Watson playing Jeopardy, AlphaGo play-
ing Go), minimally intelligent systems (e.g., 
autopilots of commercial airlines and passenger 
ships, cruise controls for automobiles), mechani-
cal systems (e.g., ceiling fans, motel alarm clocks, 
blood pressure monitors), and some decision- 
making events that did not involve machines (e.g., 
Magnus Carlsen’s dramatic Queen sacrifice).

The process of creating this corpus of cases 
was opportunistic. In the absence of a model of the 
process of explaining, we wanted to cast a wide 
net. We had no basis for establishing criteria for 
acquisition and selection of cases and we did not 
want to narrow our corpus prematurely. We were 
not conducting a formal meta- analysis, in which 
we would need to set clear criteria for acquisition 
and selection in advance. Even a minimal criterion 
such as an account that was sufficiently detailed 
was too restrictive because we were also inter-
ested in poor explanations, which allowed us to 
examine how they were inadequate. This wide- 
net approach has served us well in previous nat-
uralistic studies on the nature of decision- making 
(Klein et al., 2010) and insight (Klein & Jarosz, 
2011). This wide- net approach is also consonant 
with qualitative research methodology. Unlike 
experimentation, where one has key questions 
in advance and seeks an answer, in qualitative 
research, one seeks good questions.

We were selective in that we wanted to include 
at least some cases involving intelligent systems, 
automated systems, and mechanical systems 
because this research was part of a DARPA pro-
gram on Explainable AI. Other than that, the cases 
were all selected because they held promise for 
involving informative cases of explaining.

The researchers used the corpus of 73 cases 
to inform their understanding of broad features 
of explanations (e.g., the mechanisms frequently 
employed by Explainers, the presence or absence 
of mental simulation, and barriers/errors). Of the 
73 total cases, 42 were “global” explanations, and 
31 were “local.” Local cases involve explaining 
why a specific outcome occurred, whereas global 
explaining is about general principles such as 
how a device works. The 73 cases are listed in the 
Appendix.

From the larger set, 26 examples stood out 
based on their richness and their judged potential 
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for helping us construct a model of explaining 
and we chose these for more careful study. These 
examples had more detail than the others. The 
detail included more causes and more intercon-
nections between causes. The 26 selected cases 
are listed in Table 1, and we have framed them as 
questions. Questions are an obvious starting point 
for explanations—questions people don’t know 
the answer to. Not everything needs explaining. 
The corpus included both local and global cases. 
Citations are provided in the Appendix.

Analysis of the Case Materials

We studied the explanatory materials relying 
on our own inductive and abductive reasoning 
to detect themes across the incidents.

Because this was an exploratory project, a 
naturalistic investigation, we did not establish a 
set of analytical protocols in advance. We began 
with 20 coding dimensions, informed by our 
broad analysis of the larger corpus of 73 cases. 
During the course of coding the smaller set of 

TABLE 1: Corpus of 26 Examples of Explaining Activities.

Global Explanations

• Why do Westerners and Arabs baffle each other in the way they think?

• Why do motel clock alarms sometimes fail to wake us up?

• Why do automobile cruise control systems sometimes run amok?

• Why do autopilots sometimes quit working with no warning?

Local Explanations

• Why did Watson give the answer “Toronto” in Jeopardy?

• Why are there maggots in my dead refrigerator?

• Why did Air France flight #447 crash?

• How did Magnus Carlsen come up with his dramatic Queen sacrifice to win a chess championship?

• Why did my GPS take me down an absurd route from San Francisco airport to Monterey?

• Why did a firefighter in LA County Fire Department claim that a newbie had an attitude problem?

• Why did the police officer shoot the innocent African- American shopper in Beavercreek Ohio?

• Why did the Department of Justice confrontation with David Koresh end in disaster?

• Why did CPT Rogers, of the USS Vincennes, shoot down an unarmed Iranian airliner in 1988?

• Why did the USAF F- 15s shoot down two US Army helicopters over northern Iraq in 1994?

• Why did Korean Air Lines flight 007 get shot down?

• Why did the cruise ship Royal Majesty get grounded?

• Why did the automatic blood pressure machine fool the surgical team into thinking that a patient 
with low blood pressure actually had high blood pressure?

• Why did the airline pilot fail to arm the spoilers, resulting in a crash?

• Why did our ShadowBox instructions fail to get the effect we wanted in a military study of Good 
Strangers?

• How did the firefighter know to order his crew out of the burning building?

• Why did the British naval officer on board HMS Gloucester order the shoot- down of a new track 
during Desert Storm?

• Why did a missile battery bomb itself?

• Why was the German Blitzkrieg tactic so effective against the French in WWII?

• Why did the USN ship John McCain get into a collision?

• How did an engineer discover that a rogue train was causing disruptions in service?

• How did researchers discover the cause of Yellow Fever?
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26 explanations, we discovered that most of the 
dimensions either overlapped or were ambigu-
ous, and we reduced the original 20 categories 
to eight: the purpose of the explaining process, 
the trigger for the process, the Causal Palette 
(see below), the type of mental simulation, the 
number of entities and transitions involved in 
the mental simulation, the mechanism used for 
the explaining (analogs/comparisons, contrasts, 
diagrams, counterfactuals), and the use of tacit 
knowledge. See Table 2 for the coding catego-
ries, response options, and their corresponding 
definitions.

Two research assistants independently coded 
each of the cases. Inter- coder agreement was 
assessed, and modifications were made to cod-
ing criteria in order to resolve disagreements 
and improve clarity.

We calculated inter- coder agreement on 
the basis of how often coders were aligned in 
all dimensions across each individual cod-
ing dimension. Each of the eight dimensions 
included subcategories developed to express 
detail about the nature of each given explana-
tion. Raters selected one or more of the descrip-
tors in these subcategories from a set of three 
to nine options, or provided numerical ratings 
(e.g., 0–5) for each.

Overall inter- rater agreement was 71.2%. 
The rates of essential agreement are sufficiently 
high to instill reasonable confidence in the 
conclusions.

RESULTS

The primary purpose of requesting an expla-
nation was to correct or at least unearth flawed 
beliefs (n = 25). We defined beliefs as causal 
connections between initiating conditions and 
outcomes. The trigger for local explanations 
was primarily surprise (92%). For example, 
why did Watson answer “Toronto,” while play-
ing Jeopardy? Why were there maggots in my 
dead refrigerator? Why did a GPS device send 
one of the authors down an absurd route? Why 
did a Beavercreek Ohio police office shoot an 
unarmed customer in a Wal- Mart store?

A lack of information triggered the explana-
tion in nine cases, and in six cases, the explain-
ing appeared to be pre- emptive, to prevent 

confusion. That is, the Explainer offered infor-
mation in advance of a problem or confusion, 
anticipating that there might be a difficulty. 
Only three of the cases were deemed to be a 
fill- the- gap effort, which researchers defined as 
intending to add facts to what is already known.

Mental simulation, as expected, played a 
large role in the process of explaining; the 
Explainers, in building their stories, were 
seeking to help the Learners mentally simu-
late how the events led up to the surprising 
outcome. Causal chains (simple progressions 
from one state to the next) were found in 14 of 
the 26 cases, and networks of causes (descrip-
tions involving multiple intersecting causes 
that do not line up in a chain) were found in 
14 cases. We have observed (Klein & Crandall, 
1995) that the mental simulation in good causal 
chain explanations involve at most three or four 
causes, and our data supported this hypothesis. 
We also hypothesized, based on the findings 
of Klein and Crandall, that mental simulations 
would have no more than six transitions, and we 
only found two cases with more than two tran-
sitions. The maximum number of causal chain 
transitions in our corpus of cases was three.

We also examined the type of reasoning used. 
We found that contrasts were the most frequent 
(found in 23 of the 26 cases). Diagrams were 
the second most common, appearing in nine of 
the cases. Table 3 shows a summary of all cod-
ing criteria for the 26 explanations.

We used these results in addition to our gen-
eral analysis of the larger corpus of 73 exam-
ples to create conceptual models of the two 
types of explaining activities, local and global 
explaining.

Local explaining seeks to justify why spe-
cific actions were taken or decisions were made. 
In contrast, global explaining involves confu-
sion or uncertainty, usually about how a sys-
tem works—the explaining in these instances 
is not tethered to any particular incident. The 
local/global distinction formed a part of the ini-
tial rationale of the DARPA XAI program, and 
we found the distinction useful in formulating 
the models presented below. However, we also 
found that local explaining efforts generally 
invoked some global issues about how things 
worked. Therefore, the local/global distinction 
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TABLE 2: Coding Categories and Response Options.

Coding Category Response Options Definitions

Purpose of 
explanation

Predicting Allow the user to predict or forecast a future 
event or outcome.

Trust Gain the user’s trust, persuade the user, or help 
user make a better judgment of when to trust 
the system.

Correcting or unearthing 
flawed beliefs or 
assumptions

Identify and correct misconceptions.

Evaluating a person Evaluate a person’s performance based on the 
sophistication of their explanation.

Derivation/history Provide historical background about how the 
present state came to be.

Trigger for 
explanation 
process

Surprise Violation of expectancies.

Ignorance Curiosity.

Pre- emptive Anticipating future surprise or confusion.

Fill- the- gap Adding facts to something already known.

Causal Palette Event/decision/forces External act or event that impacted the situation.

Missing data Data that, if known, may have changed the 
course of the incident.

Erroneous data Data were wrong or not portraying reality.

Flawed beliefs A belief that was wrong or not applicable to the 
current situation.

Mismatches to intelligent 
system

A mismatch in knowledge, goals, constraints, 
level of engagement, reasoning tactics, 
affordances, situation assessment, between 
intelligent systems (including humans).

Mental simulation 
type

None   

Causal chain The domino effect.

Causal landscape A tangle; causes that are interrelated.

Entities involved in 
mental simulation

Number of entities Causes given in the explanation.

Transitions involved 
in mental 
simulation

Number of transitions 
between entities

Links or relationships between the causes.

Explanation 
mechanism

Analog/comparison Analogy, metaphor, simile, or other comparison

Contrast X instead of Y.

Diagram Explanation portrayed in diagram form.

Counterfactual If X were true, Y could have happened.

(Continued)
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is not clear- cut. If the explaining process was 
centered on the incident, we classified it as 
local. If the explaining process centered on the 
details of how something worked, we classified 
it as global even if it invoked a specific incident.

Local Explaining
People request local explanations when they 

want to know why something happened. Events 
did not go as expected, or a machine acted up 
for some reason. Hence, there is a surprise. 
By “surprise,” we are referring to a trigger for 
sensemaking, as we have discussed previously 
(Klein et al., 2006).

Figure 1 presents a model describing the pro-
cess of local explaining. The process is fairly 
straightforward—a surprising event engenders 
a need for something to be explained, lead-
ing to a diagnosis of this request, followed by 
a process of building and then packaging the 
explanation in the context of the Learner’s 
background. We reviewed all 31 examples of 
local explaining from of our set of 73 cases 
to create a generic description of the process 
of explaining, as shown in Figure 1. The vast 
majority of the local explaining examples were 
triggered by a surprise.

Surprise is a function of the Learner’s mental 
model. Some events may surprise one person 
and not another. A driver with no idea of the 
layout of a city may not blink when the navi-
gator says to turn left at the next light. In con-
trast, a driver who knows the neighborhood will 
be surprised and is likely to want the directive 
explained. The Explainer will need to take the 

Learner’s perspective into account. Is the driver 
saying “Left?” because it was noisy and he/she 
wasn’t sure of what the navigator said? Or is 
the driver questioning the directive? Here, the 
explanation is the dialog between the Learner 
and the Explainer, and not simply a set of 
statements.

In many of the examples we studied, the 
Explainer began by trying to diagnose the 
reason for the inquiry. Since an assumption 
was violated, the Explainer tried to determine 
which assumption was wrong, in order to cor-
rect it. This process is very focused and can be 
very brief, as opposed to presenting a lengthy 
account of a system or a situation and then try-
ing to extract the gist.

Figure 1 shows the Learner’s status at the 
left and lists some of the different features the 
Explainer might want to take into account about 
the Learner. If you are explaining something 
to the Learner, you may want to consider the 
richness of the Learner’s mental model and sim-
plify your account accordingly. And along with 
the Learner’s mental model, you may want to 
determine the Learner’s mindset: the beliefs in 
the mental model that are framing the way the 
Learner approaches the task. You may want to 
consider the Learner’s goals in requesting the 
explanation in order to highlight issues that 
will be most relevant to the Learner. You might 
consider the time pressure that your conversa-
tion is under in order to determine whether to 
truncate your comments. You may try to antic-
ipate any possible common ground confusions 
so that you can take extra care in defining the 

Coding Category Response Options Definitions

Tacit knowledge Perceptual discriminations Interpreting and differentiating between cues.

Patterns Trends that are seen across examples; features 
that commonly go together.

Familiarity/abnormality Understanding of what is “normal” and/or what 
deviations from normal look like.

Mental models How something works; how different parts are 
related to one another within a system.

Mindsets An overarching set of beliefs/attitudes.

TABLE 2 (Continued)
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terms you are using. The perception of common 
ground will shape the amount of detail provided 
during the explaining process (see Klein et al., 
2005, for a discussion of common ground and 
coordination). You may try to determine how 
the Learner is assessing the situation and also 
the Learner’s role in the activity, so that you can 
provide background information as necessary. 
Thus, the process of explaining to another per-
son is more complicated than merely issuing an 
explanatory statement.

The components shown in Figure 1 are fea-
tures and processes, and the links between them 
display the flow of influence to enable the pro-
cess of explaining.

The process of explaining is even more diffi-
cult when writing to an audience instead of hav-
ing a face- to- face dialog with another person. 
Our cases came from published materials and 
the authors had to make inferences about the 
readers, for example, their knowledgeability, 
goals, and so forth. However, the model shown 
in Figure 1 is intended for interpersonal dialog. 
For face- to- face conversations, it may seem 
daunting for the Explainer to take into account 
the Learner features listed in Table 1, and we 
think it unlikely that Explainers are consciously 
and deliberately checking for each of these 
features—we expect that this kind of perspec-
tive taking is accomplished intuitively and that 
there are individual differences in sensitivity to 
Learner features.

Learner status. The Explainer appeared to 
take the Learner’s features into account in 26 
of the 31 instances of local explaining. In all of 
the 26 instances in which Learner features were 

TABLE 3: Frequency of All Coded Categories.

Coding Category
Number of 

Explanations
Percentage of 

Total

Purpose of 
explanation

  Predicting 7 26.9%

  Trust 14 53.8%

  Correcting/
unearthing flawed 
beliefs

23 88.5%

  Evaluating a 
person

1 3.8%

  Derivation/history 17 65.4%

Trigger

  Surprise 22 84.6%

  Ignorance 9 34.6%

  Pre- emptive 6 23.1%

  Fill the gap 3 11.5%

Causal Palette

  Events/decision/
forces

20 76.9%

  Missing data 15 57.7%

  Erroneous data 7 26.9%

  Flawed beliefs 20 76.9%

  Mismatches to 
intelligent system

23 88.5%

Mental simulation 
type

  None 7 26.9%

  Causal chain 14 53.8%

  Causal landscape 14 53.8%

Entities involved in 
mental simulation

*2.42

Transitions involved 
in mental 
simulation

*0.50

Explanation 
Mechanism

  Analog/
comparison

5 19.2%

  Contrast 23 88.5%

  Diagram 9 34.6%

  Counterfactual 5 19.2%

Tacit Knowledge

  Perceptual 
discriminations

5 19.2%

  Patterns 10 38.5%

(Continued)

Coding Category
Number of 

Explanations
Percentage of 

Total

  Familiarity/
abnormality

15 57.7%

  Mental models 23 88.5%

  Mindsets 14 53.8%

Note: The values in this table reflect codes generated 
by one or both raters.
*These values are averages across all explanations.
Codes for each category were not mutually exclusive.

TABLE 3 (Continued)
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considered, it seems to have been the richness 
of the Learner’s mental model that was taken 
into account, and not the other factors shown 
in Figure 1. For example, in explaining why 
someone found maggots in a refrigerator that 
stopped working while the owner was on vaca-
tion, the Explainer addressed the assumption 
that the refrigerator was airtight. Even though 
the Learner did not state this assumption in 
the original question, the Explainer was able 
to infer the Learner’s mental model of how a 
refrigerator works. All of the cases came from 
published accounts rather than observations of 
interactions, so factors such as time pressure 
and Learner goals and situation assessment and 
common ground did not come into play. We 
have included these factors in Figure 1 because 
we hypothesize that they may be very relevant 
during actual dialogs, as between two people or 
between an intelligent system and a user.

Diagnosis. After the request is triggered, 
the Explainer next has to diagnose what is 
behind it. This step is critical to the process of 
local explaining. The trigger is a violated expec-
tation, and the Explainer tries to identify what 
was that expectation and why was it violated. In 

so doing, the Explainer simplifies his/her task. 
All the Explainer needs to do is provide infor-
mation about how the Learner’s expectation 
or assumption was wrong, or was limited, and 
what is a more accurate belief. The Explainer 
does not have to give a full account of how the 
device works or why the event unfolded as it 
did.

Given that our cases came from published 
materials, there was no face- to- face diagno-
sis. The diagnosis required the author to infer 
confusion. For example, Gladwell’s account of 
David Koresh assumed that most of his read-
ers would be as bewildered as he had been by 
Koresh’s statements and actions, and he diag-
nosed the readers’ (and his own) confusion as 
stemming from ignorance about the Branch 
Davidian movement.

Once the Explainer diagnoses the reason for 
the mismatch, the Explainer can use this reason 
as a focused explanation. A focused explanation 
is a much easier task than trying to present a 
comprehensive overview of all the causes and 
components involved. The driver says “Left?” 
and the navigator (the Explainer) gives a one- 
word response: “Traffic.”

Figure 1. Model of the process of local explaining.



Month XXXX - Journal of Cognitive Engineering and Decision Making10

All of the 31 cases of local explaining 
appeared to depend on some level of diagno-
sis, and none of them tried for unnecessarily 
detailed accounts. However, in only three of 
the cases was there the “nutshell” account such 
as the driver/navigator interaction, “Left?” 
“Traffic.” We believe that the reason that these 
nutshells did not occur more often is that the 
cases we examined were too complex—they 
involved several causes, sometimes portrayed 
as a story and other times as a network. Nutshell 
responses would only occur when there was a 
single cause for a surprising event, or when the 
Explainer has some other reason to explain sim-
ply and rapidly, as opposed to complex incidents 
such as the Air France 447, example which is a 
blend of a story and a network, therefore not a 
straightforward causal chain.

The Air France 447 tragedy resulted in 
228 deaths. The airplane took off from Rio de 
Janeiro, Brazil on June 1, 2009, on its way to 
Paris, France. However, 3 hr later, it crashed 
into the Atlantic Ocean. Some wreckage and 
two bodies were recovered in a few days, but 
the black boxes, the remaining bodies, and 
the bulk of the wreckage were not located for 
another 2 years. Why did the airplane crash? 
The explanation that the aircraft stalled begs 
the question of why it stalled. Many aspects 
of the pilot decision making are unclear and 
ambiguous, as described in the final report 
released in 2012 by BEA, France’s Bureau 
of Enquiry and Analysis for Civil Aviation 
Safety, and it is unlikely that a definitive expla-
nation will ever be achieved. One of the prime 
causes was that the pitot tubes used to measure 
airspeed had iced up, and when airspeed infor-
mation was lost, the autopilot system turned 
off and other instruments became unreliable, 
leading to confusion of the aircrew and a fatal 
decision to climb, resulting in the stall. What 
remains unknown, and subject to debate, is 
why the crew decided to climb and why the 
pilot flying seemed oblivious to the indications 
that the airplane was stalling.

In the absence of a conclusive account of 
the accident, a number of different explana-
tions have been advanced for what went wrong. 
For example, Palmer (2013) focused on poorly 
trained pilots, and there is no denying that the 

pilots failed to understand the situation and as a 
result made poor decisions.

For the purpose of illustrating the model of 
local explaining shown in Figure 1, we exam-
ined a different account, one that suggests that 
the pilot error was itself caused by misunder-
standing the intelligent technology that sup-
posedly made the airplanes stall- proof (Sarter, 
personal communication, June 11, 2021). Why 
would the pilot climb so steeply without suf-
ficient concern about stalling the airplane? 
One possibility is that the pilot flying had an 
erroneous belief that it was impossible to put 
this airplane into a stall. The manufacturers 
of the Airbus A330 had made this assurance. 
However, the mechanisms that were designed 
to prevent stall were valid only as long as the 
airplane sensors were working correctly. In this 
incident, when the pitot tubes had iced up and 
the airplane lost its ability to gage airspeed, it 
did become vulnerable to stalling but the pilot 
flying the airplane may have been unaware that 
it could now go into a stall. This account of the 
incident illustrates how a surprising event gave 
rise to explanatory effort. It illustrates how the 
diagnosis centered on a mistaken belief (that 
the airplane could not stall) and identified the 
condition that allowed a stall (the icing that 
affected the critical airspeed sensors.) A more 
detailed attempt to explain the accident identi-
fied seven distinct causes that resulted in confu-
sions that chained and intersected. An event that 
first seemed to make no sense came into focus.

Further, the Air France 447 incident was a 
blend of story and network of causes. The basic 
causal chain at first seems straightforward but 
as the explaining process adds more details and 
causes, it turns into a network of causal factors.

Several of the examples presented below will 
further illustrate the Diagnosis step in Figure 1: 
The Wal- Mart shooting, the grounding of the 
Royal Majesty, the understanding of how mag-
gots got into a freezer compartment. As we 
describe these examples, we will describe the 
Diagnostic step in each.

Explanatory components. Next comes 
the Explanatory Components, consisting of 
two sub- components that contribute to the 
content of how the local event is explained: 
the Causal Criteria for what can count as a 
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cause and a Causal Palette consisting of types 
of causes that are often invoked in explaining 
something. In explaining something we offer 
causes. The Explanatory Components shown 
in Figure 1 refer to what counts as a cause and 
what kinds of causes might be invoked.

Hoffman et al. (2011) reviewed the literature 
on criteria for causes and identified four criteria. 
We are not claiming that people systematically 
search for causes by using these features—we 
are presenting the features so that readers will 
appreciate why certain issues are considered as 
possible causes and others aren’t.

The four features are : mutability (what in 
this incident can be reversed to prevent the out-
come?), covariation (what has varied in line 
with the effect?), surprisingness (e.g., incon-
sistency, connections, false assumptions), and 
plausibility, a feature that does not come into 
play in nominating causes but does come into 
play to assess causes and explanations—the 
potential cause has to seem plausible for pro-
ducing the surprising outcome.

The Explanatory Components part of 
Figure 1 also includes a “Causal Palette.” 
Reviewing the 31 incidents that involved local 
explaining, we identified several factors that are 
often cited as plausible causes for an event. We 
can consider these as a Causal Palette.

Just as artists will mix a custom set of colors 
on their palettes that get re- used for a particu-
lar painting, the Causal Palette is a set of the 
types of causes that get re- used for explaining in 
a particular situation. We do not claim that the 
Causal Palette shown in Figure 1 is complete. 
We have simply compiled a set of causes that 
are often cited. When an Explainer searches for 
reasons why a Learner has become confused, 
there is a good chance that the Explainer will 
consider topics from this Causal Palette. The 
Explainer is not sorting through the Causal 
Palette in the hopes of finding good candidates. 
Rather, the Causal Palette is the Explainer’s 
attempt to describe which types of events are 
usually nominated as possible causes.

The items in the Causal Palette include: 
Events, Decisions, Forces, Missing data, 
Erroneous data, Flawed beliefs including mode 
errors, and Mismatches in thinking with that 
of an intelligent system (including another 

person). For example, in the GPS example 
described in the introduction, the causes include 
a flawed belief (the driver assumed they would 
be continuing straight), and an event (the traffic 
shown on the GPS device). Or consider the Air 
France 447 case. The surprise was that the PF 
(pilot flying) decided to climb steeply, resulting 
in a stall in an airplane that was never supposed 
to stall and a resulting crash.

To explain this event, we diagnose the 
causes, not all the causes of the event (which 
would generate a very large and complex influ-
ence diagram) but the causes that also created 
the surprise. One cause was an event: the fro-
zen pitot tubes. Another cause was the errone-
ous and missing data, given that the airplane 
was no longer capable of assessing its airspeed. 
Another cause may have been a flawed belief of 
the pilot that the aircraft could not stall. These 
illustrate the general causal features invoked in 
accidents of this nature.

Our corpus included several examples 
involving erroneous data. In the case of the Wal- 
Mart shooting in Ohio, a police officer burst into 
a Wal- Mart and fatally shot a Black customer 
without even bothering to ask the customer any 
questions. How could this happen? The subse-
quent diagnosis explained that the police officer 
mistakenly believed the dispatcher had warned 
him of an active shooter, so the officer was fol-
lowing a protocol for handling active shooter. 
In another case, the cruise ship “Royal Majesty” 
grounded itself in clear weather. How could that 
occur? The diagnosis was that the cable attach-
ing the captain’s instruments to the GPS had 
come loose, and he was getting an erroneous 
picture while believing that it was accurate. In 
the case of the discovery of how Yellow Fever 
is transmitted, the “conclusive” experiment had 
been done and ruled out mosquitoes as a pos-
sible cause of transmission, but the experiment 
was flawed because it didn’t take into account 
the 12 - day latency period following a mosquito 
bite.

The Air France flight #447 crash, described 
earlier, fits the category of flawed beliefs. The 
pilot flying the airplane may have believed the 
plane could not stall, but when the pitot tubes 
froze, the autopilot kicked off and the plane 
actually became vulnerable.
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Regarding the last item in the Causal Palette, 
Mismatches, the first case shown in Table 1 
refers to the IBM program Watson, which won 
a Jeopardy contest. Watson flubbed its final 
Jeopardy response to a clue “U.S. Cities”: “Its 
largest airport is named for a World War II hero; 
its second largest, for a World War II battle.” 
Watson responded, “What is Toronto?” which 
makes no sense at all. An Explainer might 
include this incident to illustrate that Watson 
obviously does not “think” the same way 
humans think—this is the mismatch that the 
story exemplifies.

In addition, we found mismatches in per-
spective. How do we diagnose the reason why 
another person or an intelligent system made a 
surprising decision or made an unexpected rec-
ommendation? When another person or intel-
ligent system acts in a way that surprises us, 
the reason may be that that person/system has 
a different perspective than we do. We refer to 
these issues as a Perspective Mismatch (PM). 
The Explainer will have to diagnose one or 
more PM issue and determine if the Learner is 
mistaken or if, perhaps, the other person or the 
system is acting incorrectly. Then the Explainer 
will explain the reason for the mismatch to the 
Learner. We have identified seven PM issues—
reasons that can explain the mismatch that 
resulted in a surprise: asymmetrical knowledge 
(we may know something the other entity does 
not, or vice versa), goals (we may be pursuing 
different goals), constraints, level of engage-
ment, reasoning tactics, affordances (we may be 
aware of affordances that the other entity hasn’t 
considered, and vice versa), and situational 
understanding.

Building the story. In parallel with identify-
ing the causes to go into a story is the process of 
building the story around the causes—the way 
the explanation is communicated. The simplest 
version is for the Explainer to identify and name 
a single cause. In the GPS case, the navigator 
(the Explainer), just said “Traffic.”

Most of the time, the Explainer will need to 
formulate a more elaborate account in explain-
ing an event. Frequently, this account will take 
the form of a story. A typical story takes the 
form of a chain, one cause/event leads to a sec-
ond, and then to a third, and to an outcome.

In building the story, plausibility comes into 
play. Each state transition in the chain has to 
plausibly follow from the previous state. The 
Learner needs to imagine how he/she would 
make the transitions. If plausibility is breaking 
down, the explanation is seen as problematic.

For example, consider this incident from our 
corpus. A couple went on a 2 - week vacation 
and when they returned home, to their surprise 
(and disgust) they discovered maggots and dead 
flies in the freezer compartment of their sealed 
refrigerator. How could that have happened? 
The diagnosis centered on the fact that in their 
absence the refrigerator had stopped working. 
As a result, the food in the refrigerator spoiled, 
which smells terrible to us but smells like per-
fume to a fly. Now it is starting to make sense. 
The flies must have laid eggs that hatched into 
maggots—the larvae can hatch into maggots in 
24 hr. But there is a second mystery: how had 
flies gotten into the refrigerator? What do we 
know about a refrigerator that could attract and 
permit flies?

In this case, three different stories were 
developed. One story was that flies may have 
found a tiny crevice where the refrigerator door 
wasn’t perfectly sealed. A second story was 
that the flies got in through the ice dispenser—
that’s another entry point because the flap- gate 
is weaker than the door seal. And the largest 
number of flies/maggots were found in the 
vicinity of the icemaker. A third story was that 
the flies never found an entrance into the refrig-
erator—this story centered around a picnic that 
the couple attended before they left town. The 
flies might have deposited eggs on some of the 
picnic food that was left unguarded, and the 
food was placed in the freezer and then the eggs 
hatched when the refrigerator stopped working. 
Thus, we have three stories, each composed of 
simple chains of events: a break in the door seal, 
a weak flap by the icemaker, and carelessness 
during a picnic.

With more complex cases, the Explainer may 
shift from story building to a Causal Landscape 
(Klein, 2018) or some other visual representa-
tion of a larger number of causes that operate 
in parallel and also intersect. Sometimes, the 
Explainer will draw a diagram to show the new 
belief/assumption. Explaining can take other 
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forms, such as using a contrast to illustrate how 
the current situation is different from one that 
seems similar, or offering an analog to get the 
point across.

Packaging the explanation. Next, the 
Explainer will give some thought to packaging 
the explanation—executing the explanation. 
The context, along with the Learner’s charac-
teristics, will affect tradeoffs of effort, cost, and 
time. Stories should not be too complicated—
perhaps invoking three causes or less, and no 
more than six transitions; Klein and Crandall 
(1995) identified these limits in a study of men-
tal simulation. The building of the explanation 
will interact with the packaging of the expla-
nation as issues may arise during packaging 
that will suggest better ways to construct the 
explanation.

In story building there is a cognitive strain 
to provide appropriate complexity without 
being overwhelming. There are several ways to 
reduce the number of causes so as to increase 
the Learner’s comprehension. One way to 
maintain the constraint on three causes is to be 
selective about which causes to include, drop-
ping the ones that are less relevant. Another 
approach to keep things manageable is to lump 
several causes—to abstract them into a more 
general cause.

Stopping point. When is the explaining 
process finished? The stopping point that the 
Explainer seeks to achieve is for the Learner 
to experience a perspective shift, as a result of 
modifying or replacing a belief/assumption, at 
which point we hypothesize that the Learner 
should be satisfied. The concept of a perspec-
tive shift is different than the “perspective mis-
match” we introduced earlier to describe how 
people may get confused because they make 
faulty assumptions about other people. Here, in 
Figure 1, the perspective shift is for the Learner 
now to appreciate that s/he might well have 
taken the same actions/decisions as actually 
occurred given what was known at the time. If 
the Explainer uses a story, a chain of events in 
a causal stream, the stopping point is for each 
transition to appear plausible to the Learner. In 
the driver/navigator example above, the naviga-
tor doesn’t bother telling the driver which navi-
gation system is being used, or the logic it relies 

upon. The navigator simply says “Traffic,” 
because that is sufficient to let the driver appre-
ciate why the surprising direction to turn left 
was given. The stopping point, the assessment 
of plausibility, will vary by the Learner’s expe-
rience and mental models. We are calling this a 
perspective shift because the Explainer intends 
for the Learner to move from a mindset that 
“this isn’t making sense,” to a mindset of “okay, 
I see how this all follows.” When the Explainer 
believes the Learner has made this shift, no 
more discussion is needed and the explanation 
is completed, having reached a stopping point.

Global Explaining

Researchers have acknowledged since at 
least as far back as Clancey (1983), global 
understanding is an important goal of expla-
nation. In contrast to local explaining, which 
focuses on what happened during a specific 
incident, global explaining is about how things 
work generally—how a device works, how 
a strategy works, how an organization works. 
Our model of global explaining was based on 
the coding analysis, which contained only four 
global examples, and our general impressions 
from the larger corpus of global examples. We 
focused on 19 of those cases because of the 
completeness of the accounts of “How does x 
work?” The cases were most often expressed as 
questions, such as: Why do some modern eleva-
tors not stop at the next floor? Why is it so hard 
to set a digital watch? Why are we often con-
fused by ceiling fans, by airplane reading lights, 
by the mute button on a TV remote, by motel 
telephones and clock alarms?

For example, how do ceiling fans work (and 
why do we sometimes get confused about oper-
ating them)? Ceiling fans use a simple inter-
face that doesn’t require a monitor or anything 
fancy—just the cord and the visual of the fan 
turning.

As Degani (2004) shows, 1 source of confu-
sion is that if the blades are rotating, it is easy to 
forget how many times you tugged on the cord. 
And then you won’t know if the next tug will 
increase the rotation speed more or will turn it 
off. The device does not display its history. All 
you know is whether or not it is rotating. Further, 



Month XXXX - Journal of Cognitive Engineering and Decision Making14

you don’t know how many speed settings it has. 
Making it more confusing, you don’t get instant 
feedback, as you would with a 3- way bulb. If 
you are already at the highest speed the next 
tug will turn it off. But you wouldn’t know that 
because it continues to rotate. So you tug the 
cord again, starting it up again. Therefore, the 
essence of understanding why we get confused 
when operating overhead fans is to grasp how 
these fans are different from an apparent analog, 
a three- way light bulb: the delayed feedback 
that can make it very difficult to control the fan 
and the difficulty in accurately perceiving the 
fan speed.

In many ways our account of global explain-
ing is similar to that of local explaining. 
However, we found two fundamental differ-
ences. One difference is that local explanations 
typically assume that the Learner is famil-
iar with the set- up or with the device, hence 
the surprise when expectations are violated. 
Global explanations do not assume familiarity. 
Therefore, global explanations generally do not 
focus on the violated expectation.

A second difference is that with local 
explaining, the Explainer seeks to diagnose the 

confusion, typically zeroing in on a flaw in the 
Learner’s mental model. The Explainer then 
seeks to help the Learner revise his/her mental 
model. For global explaining, the Explainer has 
no reason to believe that the Learner’s mental 
model is defective and so the Explainer is not 
seeking to correct the Learner’s mental model—
only to expand or enrich it, and address some 
aspect of ignorance. Figure 2 shows a descrip-
tion of global explaining, starting with the issue 
of how the device or computational system per-
forms a function of interest.

Many of the 42 cases of global explaining 
in our sample were triggered by curiosity and 
by a perceived need for more detailed infor-
mation. The aspects of the Learner’s status are 
essentially the same as in local explaining. The 
important factors are: richness of the Learner’s 
mental model, the Learner’s goals, common 
ground issues, and time pressure.

We hypothesize that time pressure is less 
of an issue with global explaining than local 
explaining, which is triggered by a need to 
understand and react to a surprise. In addition, 
the issue of situational understanding does not 
come up for global explaining because the 

Figure 2. Model of the process of global explaining.
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explaining process is not tethered to a specific 
incident.

In our sample of 42 cases of global explain-
ing, most appeared to involve some attempt to 
take the features of the Learner into account and 
these addressed the first feature, the imagined 
richness of the Learner’s mental model. For 
example, in explaining why Westerners and 
Arabs baffle each other in the way they think 
(Table 1), Klein and Kuperman (2008) identify 
a small set of cognitive and social mismatches 
and do not attempt to provide extensive detail 
on world politics and history; they assume that 
readers will have some knowledge of the differ-
ent populations. In explaining why hotel alarm 
clocks sometimes fail to wake us up (Table 1), 
Degani (2004) assumed that readers would 
be familiar with the clock/radios provided 
by hotels and does not spend time describing 
their general mechanics, presenting only those 
details relevant to the traumatic experience of a 
wake- up failure.

For global explaining, the process of diag-
nosis is different than for local Explaining. The 
Explainer is not diagnosing the Learner’s con-
fusion or flaws in the Learner’s beliefs. Instead, 
the Diagnosis process in Figure 2 is primarily 
about the Explainer’s speculations about what 
the Learner is missing. The Learner may be 
missing a framework if the system is sufficiently 
strange. Or the Learner may be missing some 
of the components or some of the links. Or the 
Learner may be missing causal information that 
makes the story or the diagram plausible. The 
Explainer’s assessment will guide the way he/
she describes the working of the system.

Figure 2 introduces the concept of an 
Explanatory Template. The template consists 
of the topics most frequently used in explain-
ing how something works. In reviewing the 
19 cases of global explaining in our corpus 
that we studied in greater depth, we identified 
several recurring elements. These include: 
Components—The components of the device or 
computational system. Links—The causal links 
connecting these components. Challenges—
complications and confusions that warrant a 
global explanation. Near neighbors—There 
often is a comparable device that can serve as 
an analog, and the explaining will also describe 

contrasts with this near neighbor. Exceptions—
The situations that the device doesn’t handle 
well plus an account of why they are so trou-
blesome, such as the delayed feedback and lack 
of a history display with the ceiling fan. 13 of 
the 19 cases included an exception, often as the 
focus of the explanation. Tacit knowledge is 
often introduced here as the types of knowledge 
needed to operate the device when it encounters 
these exceptions.

The Explanatory Template is different than 
the Causal Palette shown in Figure 1—it is not 
a compilation of causes frequently invoked to 
account for events. Rather, it identifies consid-
erations that commonly arise in formulating 
global descriptions.

Few of the 19 cases included all of these top-
ics. Only AlphaGo and Cruise Control covered 
all five of the components. Except for the Ceiling 
Fan case, all but four of these cases included 
specification of the Components, the Causal 
Links, the Challenges, the Nearest Neighbor, 
and the Exceptions. The Ceiling Fan case did 
not present a specification on Components or 
Causal Links.

We found that a preferred format for global 
explaining is a diagram, rather than a story. The 
need to portray components and causal linkages 
is better served by a diagram. Further, the dia-
gram format is typically embellished with anno-
tations in order to describe the challenges, the 
nearest neighbor, the contrasts to that neighbor, 
and the exceptions.

The features of the Learner’s status come into 
play to select the level of detail the Explainer 
uses for the elements in the Explanatory 
Template. The Learner’s mental model affects 
the level of detail most heavily, but the set of 
goals that motivated the Learner to seek an 
explanation would also impact the level of 
detail provided.

What is the stopping point? The Explainer 
and the Learner are both seeking an outcome 
in which the Learner can mentally simulate the 
operation of the device. Each mental simulation 
is essentially a story, moving from 1 state to 
another, with plausible transitions. The Learner 
is trying to imagine how these transitions work. 
Learners will be satisfied to stop if they feel 
confident that in most cases they will be able to 
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imagine the system outputs if they are given the 
system inputs.

Figures 1 and 2 are similar because local and 
global explaining processes are the same and 
the high- level structure of the 2 models is the 
same. Nevertheless, there are some important 
distinctions in the nature of the components, 
as noted above. The trigger differs. The nature 
of the diagnosis differs. The Learner’s status is 
mostly the same but does not involve situational 
understanding. The nature of the Explanatory 
Template is very different. The nature of the 
explanation being built is different—stories for 
local explaining, diagrams for global explaining.

DISCUSSION

Rather than attempt to formulate an overall 
model of the process of explaining we deemed 
it necessary to develop models for the two types 
of conditions we observed: local explaining of 
surprising events and global explaining of the 
workings of a system or device.

For local explaining the Explainer needs 
to diagnose the Learner’s violated expectancy 
and then find ways to bring the Learner’s 
expectancies into line. For global explaining, 
the Explainer needs to help the Learner gain a 
richer mental model by providing information 
that the Learner might be missing about the 
components of the system, their linkages, about 
the challenges faced by the system developers, 
about near neighbors to the device, and about 
exceptions and system failures.

In the Explainable AI community there 
seems to be a shared belief that to help people 
understand how a system works the developers 
need to present them with explanations, and 
that these explanations need to be accurate, 
clear, complete, and logical. We argue that 
none of these properties is clear- cut. Accuracy 
is a good thing but in complex settings accu-
racy will depend on the context. An explanation 
that is accurate under 1 set of conditions may 
be misleading under other conditions. Clarity is 
also an attractive virtue until it runs into com-
plexity and dependencies and ambiguities, and 
the effort to disentangle an explanation will run 
counter to our desire for a clear, straightforward 
account. Granted, some complex explanations 

can be presented in comprehensible ways, 
but we argue that there is an inherent conflict 
between adding more details and maintaining 
comprehension. Completeness seems important 
until the mass of details renders the explanation 
incomprehensible. Finally, we value logic, but 
we usually mean deductive logic rather than 
inductive or abductive; explanations that vio-
late deductive logic are frowned upon, but in 
most complex and ambiguous settings deduc-
tive logic is not sufficient or even particularly 
helpful.

Further, we have come to question the value 
of explanations/statements that are issued with-
out taking the perspective of the Learner into 
account. We assert that what matters is the pro-
cess of explaining, which involves an Explainer 
and a Learner. To be effective, Explainers will 
need to consider the Learner’s background and 
capabilities—the richness of the Learner’s men-
tal model, the Learner’s goals, the time pressure 
the learner is under, potential areas of confusion 
and common ground breakdown during the dia-
log, and the way the Learner is assessing the sit-
uation. We emphasize the priority of the process 
of explaining over the issuing of explanations. 
Our review of the literature had shown that 
most research was about offering explanations, 
and that explanations could be assessed on their 
own merits—their clarity, comprehensiveness, 
accuracy, logic, predictability—without reflect-
ing the interaction between the Explainer and 
the Learner.

Complex systems involving AI can bene-
fit from a cognitive engineering analysis of user 
needs. Such an analysis could help AI developers 
and systems engineers make discoveries about 
the causal or explanatory landscape. With this 
information, developers and systems engineers 
can determine how best to bring that explanatory 
information to light given the black- box limita-
tions of machine learning subsets of AI .

Successful explaining should lead to better per-
formance outcomes because the Learner can now 
do a better job in carrying out a task. One outcome 
is that the Learner’s mental model is elaborated. 
The Learner has a richer idea of how a system 
works, how it fails (including how to break it), 
and how to make it work and manage it (Borders 
et al., 2019).
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We hypothesize that as a result of successful 
explaining, the Learner should generate more 
accurate expectancies or predictions about a sys-
tem or about another person. The Learner should 
now be able to shift perspectives and see the tasks 
from the viewpoint of the intelligent system or 
the other person. The Learner should do better at 
gauging trust – especially trust in machines, par-
ticularly smart machines.

Conclusions About Local Explaining

Surprise. The explaining process is triggered 
by a surprise, a violated expectation, as opposed 
to seeing explanations as attempts to fill slots and 
gaps in knowledge.

Diagnosis. Diagnosis is critical on the part 
of the Explainer to pin down the violated expec-
tation. In contrast, other accounts of explanations 
start with a complete explication of all the rele-
vant causes and their connections, and view the 
challenge as trimming details and simplifying—
gisting. We disagree. In our view, by diagnosing a 
single flawed assumption, or a small set of flawed 
assumptions, the process of explaining is a very 
focused process rather than trimming details from 
a comprehensive account.

Perspective mismatch. How do we diagnose 
the reason why another person or a mechanical 
device made a surprising decision? Our hypoth-
esis is that there is a small set of possible reasons 
and these can help the Learner make a perspective 
shift. The reasons we identified are: that person/
device might have different knowledge than I do, 
different goals, they might be operating under dif-
ferent constraints, using different reasoning tactics 
(which are especially important in dealing with 
AI), may be aware of different affordances than I 
am, may have a different mindset, may have sized 
up the situation differently than I did, or had a dif-
ferent value system than I do.

Stopping rule. The stopping rule for explain-
ing is based on a perspective shift in which the 
Learner gains the ability to see the situation from 
the vantage point of the other person or the device, 
so that the “surprising” event is no longer a sur-
prise. For this to happen, the Learner will typically 
rely on a story of how the surprising event came 
to pass. If we view the story as a causal chain, 
the Learner’s confidence in the story will depend 

on a judgment of the plausibility for each of the 
transitions in a story, or each element and link-
age in a diagram. The stopping rule in Figure 1 
is subjective—the perspective shift of the Learner 
and the perception of this perspective shift by the 
Explainer. Our conclusion is that there are rea-
sonable criteria for cutting off an inquiry without 
descending into the quest for explanatory depth. 
And our contribution is that a primary stopping 
rule is achieving a perspective shift to get to the 
point such that Learners can appreciate how they 
might have made the same transitions. At this 
point, the surprise is no longer surprising.

Language of reasons. Explaining relies on a 
language of reasons. These reasons can be causes, 
analogs, contrasts, confusions, and stories. The 
language of reasons, of causality, is different from 
the language of correlation and the strengthening/
weakening of connections between layers in a 
neural net.

Contrasts. Stories often explain by present-
ing contrasts. Our literature review (Mueller 
et al., 2018) turned up papers asserting that the 
Learner is not simply wondering why a device 
recommended course of action x, but rather, why 
did it recommend x as opposed to y? Our natu-
ralistic study showed that there are other contrasts 
of interest besides alternative courses of action. 
There can be contrasts in beliefs, in goals, or in 
the way the situation is assessed.

Conclusions About Global Explaining

Explanatory template. We postulate an 
Explanatory Template, which is a set of several 
items: components of the system, the causal 
links between the components, the nearest 
neighbor along with contrasts to that analog, 
and the exceptions.

Exceptions. The last component of the 
Explanatory Template, the exceptions, is often 
the richest one for explaining how a system 
works—or doesn’t work. Exceptions provide 
insight into the inner workings of a program 
and serve an important function in reminding us 
that Machine Learning systems rely on very dif-
ferent reasoning strategies than people do. Our 
position stands in contrast to many accounts 
that view the goal of explanations as building 
a mental model of how a device works. Our 
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view is that the Explainer also needs to describe 
how the device does not work—its limita-
tions—along with workarounds to handle these 
limitations.

Diagrams. Global explaining typically 
depends on a diagram of internal structure, 
often with annotations, as opposed to the story 
format for local explaining.

Stopping point. The stopping point for 
global explaining is to get the Learner to be able 
to run a mental simulation with standard start-
ing conditions and be reasonably confident in 
the output of the mental simulation.

Limitations of the Research
This project was designed as an initial inves-

tigation into the process of explaining, using 
qualitative methodology. We cast a wide net in 
collecting the cases, but we also relied heavily 
on one particular source, Degani (2004), which 
may have affected our analyses. Therefore, 
the models we developed and the conclusions 
we present must be treated as tentative. Other 
researchers, using different methods or even 
different sets of materials, may arrive at some-
what different accounts, but we anticipate that 
the core notions in our results and analyses will 
replicate. On the other hand, we expect that 
efforts to apply the two models of explaining, 
local and global, will reveal the shortcomings of 
the models presented in Figures 1 and 2 and will 
result in better accounts than ours for under-
standing human explaining and for improving 
the explainability of AI systems.

General Conclusions and 
Recommendations

The first 10 years of research on Explainable 
AI produced AI- oriented or computer scientist- 
oriented explanations, and did not consider 
the needs of users who are not computer sci-
entists (Mueller et al., 2018). These research-
ers in the field of Explainable AI had access 
to knowledge structures that we now regard 
as interpretable (rules, goals, decision trees, 
etc.). Unsurprisingly, these early efforts still 
failed. The few scholars who looked at this 
carefully in the following decades (Brézillon, 
1994; Brézillon & Pomerol, 1997; Clancey, 

1987; Doyle et al., 2003; Kass & Finin, 1988; 
Sørmo et al., 2005; Swartout & Moore, 1993) 
all seemed to identify the problem as relating to 
the explanation needs of humans. This includes 
understanding the context, goals, knowledge 
and the like of the user, and having a user model. 
You have to know what the person’s goal is and 
what their knowledge is to provide a reasonable 
explanation.

Swartout, Clancey, and others realized that 
“interpretable” to computer science profes-
sionals means “justificational,” not explana-
tory. Computer scientists in the present XAI 
community seem to echo the error of the past 
(i.e., that a rule trace is an explanation, or what 
Swartout and Moore called the “Myth of recap- 
as- explanation”). Further, “interpretable” has a 
particular and formal model- theoretic meaning 
to computer scientists, which is quite distinct 
from the everyday, psychological meaning.

Our recommendation is to learn from the 
failures of the past, and orient explanation to 
the needs of the person, not the information in 
the system.

Many XAI researchers acknowledge that 
explanations need to help the user or Learner 
develop a better mental model of the AI sys-
tem. This better mental model should help the 
user make better predictions about the system, 
understand when it is out- of- bounds, develop 
better expectations, develop workarounds, and 
so on. The Learner needs to make judgments 
about appropriate trust and also needs to under-
stand the boundary conditions of the device.

The issue of mental models cuts in both 
directions. For interaction with an AI system, 
one outcome of effective explaining is that the 
Learner form a better mental model of the sys-
tem, which is an important and achievable goal. 
However, our work suggests that the Explainer 
can be more successful by having a good mental 
model of the Learner, and this remains a chal-
lenge for AI systems and an opportunity for 
future generations of AI systems. We acknowl-
edge that the use cases illustrated in the present 
article do not show how a system, AI or other-
wise, might actually accomplish this in the way 
that a human explainer might, nor do we offer 
any recommendations for identifying the rich-
ness of a Learner’s mental model to improve the 
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practice/development of AI. Nevertheless, we 
suggest that AI developers might make progress 
by appreciating the way perspective- taking, 
diagnosis, and other psychological aspects of 
explaining come into play.

We also intend for our models of local and 
global explaining to go beyond AI and to have 
application to person- to- person interactions. 
Issues of perspective taking and common 
ground are central to dialog and to effective 
coordination.
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