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ABSTRACT 

What makes for an explanation of "black box" AI systems such as Deep Nets? We reviewed the 
pertinent literatures on explanation and derived key ideas. This set the stage for our empirical 
inquiries, which include conceptual cognitive modeling, the analysis of a corpus of cases of 
"naturalistic explanation" of computational systems, computational cognitive modeling, and the 
development of measures for performance evaluation. The purpose of our work is to contribute to 
the program of research on “Explainable AI.” In this report we focus on our initial synthetic 
modeling activities and the development of measures for the evaluation of explainability in 
human-machine work systems. 

 

INTRODUCTION 
The importance of explanation in AI has been 

emphasized in the popular press, with considerable 
discussion of the explainability of Deep Nets and 
Machine Learning systems (e.g., Kuang, 2017). For 
such “black box” systems, there is a need to explain 
how they work so that users and decision makers can 
develop appropriate trust and reliance. As an 
example, referencing Figure 1, a Deep Net that we 
created was trained to recognize types of tools.  

 

 
Figure 1.  Some examples of Deep Net classification. 

 
Outlining the axe and overlaying bird silhouettes 

on it resulted in a confident misclassification. While a 
fuzzy hammer is correctly classified, an embossed 
rendering is classified as a saw. Deep Nets can 
classify with high hit rates for images that fall within 
the variation of their training sets, but are nonetheless 
easily spoofed using instances that humans find easy 
to classify.  Furthermore, Deep Nets have to provide 
some classification for an input. Thus, a Volkswagen 
might be classified as a tulip by a Deep Net trained to 

recognize types of flowers.  So, if Deep Nets do not 
actually possess human-semantic concepts (e.g., that 
axes have things that humans call "blades"), what do 
the Deep Nets actually "see"? And more directly, 
how can users be enabled to develop appropriate trust 
and reliance on these AI systems? 

Articles in the popular press highlight the 
successes of Deep Nets (e.g., the discovery of 
planetary systems in Hubble Telescope data; 
Temming 2018), and promise diverse applications "... 
the recognition of faces, handwriting, speech... 
navigation and control of autonomous vehicles... it 
seems that neural networks are being used 
everywhere" (Lucky, 2018, p. 24).   

And yet "models are more complex and less 
interpretable than ever... Justifying [their] decisions 
will only become more crucial" (Biran and Cotton, 
2017, p. 4). Indeed, a proposed regulation before the 
European Union (Goodman and Flaxman, 2016) 
asserts that users have the "right to an explanation.” 
What form must an explanation for Deep Nets take?  

This is a challenge in the DARPA "Explainable 
AI" (XAI) Program:  To develop AI systems that can 
engage users in a process in which the mechanisms 
and "decisions" of the AI are explained. Our tasks on 
the Program are to:  
(1). Integrate philosophical studies and psychological 
research in order to identify consensus points, key 
concepts and key variables of explanatory reasoning, 
(2). Develop and validate measures of explanation 
goodness, explanation satisfaction, mental models 
and human-XAI performance,  
(3) Develop and evaluate a computational model of 
how people understand computational devices, and 
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then evaluate  the model using the validated 
measures, 
(4). Generate a corpus of cases in which people try to 
explain the workings of complex systems, especially, 
computational systems work, and  
(5) From the case analysis create a "naturalistic 
decision making" model of explanation that can guide 
the development of XAI systems by computer 
scientists. 
     In this presentation we report progress on our 
synthesis of ideas and concepts of explanation, the 
development of models of the explanation process, 
and the development of metrics. 
 

LITERATURE SYNTHESIS 
A thorough analysis of the subject of explanation 

would have to cover literatures spanning the history 
of Western philosophy: Disciplines including 
philosophy and psychology of science, cognitive 
psychology, psycholinguistics, and expert systems. 
The archive we created includes over 700 papers. 
 
Psychology 

The challenge of XAI entrains concepts of 
representation, modeling, language understanding, 
and learning. Concepts that are entrained include 
abductive inference, causal reasoning, mental 
models, and self-explanation. Potentially measurable 
features of explanation include: various forms of 
explanation (e.g., contrastive explanation, 
counterfactual reasoning, mechanistic explanation, 
etc.); various utilities or uses of explanation (e.g., 
diagnosis, prediction), the limitations or foibles of 
explanatory reasoning (e.g., people will believe 
explanations to be good even when they contain 
flaws or gaps in reasoning) (Lombrozo & Carey, 
2006).  

Many researchers present a list of the features 
that are believed to characterize “good” explanations 
(e.g., Brezillon and Pomerol, 1997). These include 
context- or goal-relevance, reference to cause-effect 
covariation and temporal contiguity, and plausibility. 
There are also some contradictions in the literature: 
Some assert that good explanations are simple; others 
assert that good explanations are complete. Clearly, 
good explanations fall in the sweet spot between 
detail and comprehensibility. 

A number of conceptual psychological models of 
the explanation process have been presented in the 
research literature. The first step in the model of 
Krull and Anderson (1994), the noticing of an event, 
is reminiscent of the first step in C.S. Peirce's model 
of abduction (1891), that is, the observation of 
something that is interesting or surprising. 
Subsequent steps are Intuitive Explanation, Problem 
Formulation and Problem Resolution. The model is 

not specific about what is involved in these steps, but 
is explicit about the role of motivation and effort. 

Johnson and Johnson (1993) studied an 
explanation process in which experts explained to 
novices the processes of statistical data analysis. 
Transcripts of explainer-learner dialogs were 
analyzed. A key finding was that the explainer would 
present additional declarative or procedural 
knowledge at those points in the task tree where sub-
goals had been achieved. The Johnson and Johnson 
model is expressed as a chain of events in which the 
explainer provides analogies, instructions, and 
justifications. 
 
Artificial Intelligence 

AI has has a history of work on explanation. (A 
review of the literature, with a bibliography, is 
available from the authors.) Starting with the first 
generation of expert systems, it has generally been 
held that explanations must present easy-to-
understand coherent stories in order to ensure good 
use of the AI or good performance of the human-
machine work system (Biran & Cotton, 2017; 
Clancey, 1986). 

Attempts to explain Deep Nets have often taken 
contrastive approaches. These include occlusion (e.g., 
Zeiler & Fergus, 2014), which shows how 
classifications differ as regions are removed from an 
image, and counter-examples (e.g., Shafto, Goodman, 
& Griffiths, 2014). A limitation of these approaches 
is that they conflate explanation and justification. So, 
for example, one team of computer scientists might 
“explain” how their Deep Net works by showing a 
matrix of node weights at the multiple layers within a 
network. This works as a justification of the 
architecture to computer scientists but does not work 
for explaining the Deep Net to a human user who is 
not a computer scientist. Furthermore, the focus of 
the contrastive approaches is "local" explanation, that 
is, explaining why the AI made a particular 
determination for a particular case. An example 
would be to show the user a heat map that highlights 
the eyes and beak of a bird, accompanied by a brief 
statement that the beak and eye features make this 
bird a sparrow. This is different from "global” 
explanation, which is aimed at explaining how an AI 
system works in general (e.g., Doshi-Velez and Kim, 
2017). Finally, explainability is often conflated with 
interpretability, which is a formal/logical notion in 
computer science. The fact that a computer system is 
interpretable does not mean that it is human 
understandable; the formal interpretation has 
explanatory value only to computer scientists. 
     From these literatures, we have identified some 
key concepts that serve as guidelines to consider in 
the development of XAI systems. 
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KEY CONCEPTS 

       (1). Explaining is a Continuous Process. 
Humans are motivated to “understand the goals, 
intent, contextual awareness, task limitations, [and] 
analytical underpinnings of the system in an attempt 
to verify its trustworthiness” (Lyons, et al., 2017). 
One of the consensus points coming from the 
philosophy of science is that explanations have a 
heuristic function: They guide further inquiry. The 
delivery of an explanation is not always an end point. 
Indeed, it must be thought of as a continuous process 
since the XAI system that provides explanations must 
enable the user to develop appropriate trust and 
reliance in the AI system with continued experience. 
The user must be able to actively explore the states 
and choices of the AI, especially when the system is 
operating close to its boundary conditions, including 
when it makes errors (see Amerishi, et al., 2015). 
How can XAI work in concert with the AI to 
empower learning-during-use?  
 (2). Explaining is a Co-adaptive Process. Many 
conceptual models, such as that of Johnson and 
Johnson (1993) assume that the explanation process 
is a one-way street: The explainer presents 
information and instruction to the explainee. In 
addition, conceptual models typically assume that an 
explanation can be “satisfying,” implying that it is a 
process with clear-cut beginning and end points (the 
delivery of instructional material that the user simply 
assimilates). An alternative view is that explanation 
is a collaboration or co-adaptive process involving, in 
the case of XAI, the learner/user and the system. 
“Explanations improve cooperation, cooperation 
permits the production of relevant explanations” 
(Brezillon and Pomerol, 1997, p. 7; Moore & 
Swartout, 1991). This is the concept of “participatory 
explanation,” similar to the notion of “recipient 
design" in the conversation analysis literature, i.e., 
that messages must be composed so as to be sensitive 
to what the recipient of the message is understanding 
(Sacks & Schegloff, 1974). An assumption in some 
of the first generation of AI-explanation and 
intelligent tutoring systems was that it is only the 
human who has to learn, or change, as a result of 
explanations offered by the machine. 
 (3). Explanation Triggers. Not everything needs 
to be explained, and explanations are quite often 
triggered by violations of expectation. Explanations 
among people serve the purpose of clarifying 
unexpected behavior, and so a good explainable 
system may need to understand what are the 
appropriate triggers of explanation. 
 (4). Self-explanation. Psychological research has 
demonstrated that self-explanation improves learning 
and understanding. This finding holds for both self-

motivated explanation and self-explanation that is 
prompted by the instructor (Chi, Leeuw, Chiu, & 
LaVancher, 1994). 
 (5). Explanation as Exploration. An important 
mode of explanation is helping the user understand 
the boundaries of the intelligent system (Mueller, et 
al. 2011). System developers are often reluctant to 
tell the user what the system cannot do—until they 
misuse it. Famously, Tesla’s autopilot system is 
touted as a self-driving car, except when accidents 
occur and the user is blamed for operating it in 
circumstances in which it was not intended to be 
used. Clarifying boundary conditions can help 
produce appropriate trust, so that the user knows 
when to rely on the system, and when to take over. 
 (6). Contrast Cases. When forming explanations 
of intelligent systems, it can be as important to tell 
what is not being done as to tell what is being done. 
Contrastive reasoning has been identified as central 
to all explanation (e.g., Miller, Howe, & Sonenberg, 
2017) and it can be an effective way to help the user 
understand why an expectation was violated. For 
example, an explainable GPS system might explain 
why a turn was made by describing why a (normally 
shorter) route was not taken. 
 

MEASURES 
 One purpose of our cognitive modeling is to 
highlight the key concepts that must be mated with 
measures and metrics. The creation of AI systems 
that can explain themselves will require a number of 
types of measures.  
 Explanations generated by the AI can be 
evaluated in terms of the goodness criteria, of what 
makes an explanation  good, according to the 
research literature. From a roster of those criteria we 
developed an "Explanation Satisfaction Scale," which 
has been evaluated using the Content Validity Ratio 
method (Lawshe, 1975), and following that a test of 
discriminant validity which resulted in a very high 
Cohen's alpha ~.80. The final scale consists of seven 
Likert items that reference understandability, 
satisfyingness, detail, accuracy, completeness, 
usability, usefulness, and trustworthiness.  This scale 
may be used by AI researchers in the XAI Program to 
evaluate the explanations that their systems produce 
but might be used in other applications as well. 
 Effective use of intelligent systems depends on 
user mental models (Kass & Finn, 1988). These have 
to be elicited and evaluated. In the XAI Program they 
can be elicited using some forms of structured 
interview in which users express their understanding 
of the AI system, with the protocols compared for 
their propositional concordance with explanations 
provided by experts. Based on the literature, we have 
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developed a guidebook that details a variety of 
methods for eliciting mental models. 
 Finally, the evaluation of XAI systems will 
measure the change in performance attributable to the 
explaining process, via controlled experimentation. 
Performance can be evaluated in a number of ways. 
Good explanations should enable the user to: 
• Efficiently and effectively use the AI in their work, 

for the purposes that the AI is intended to serve.  
• Correctly predict what the AI system will do for 

given cases. This can include cases that the AI gets 
right and also cases it gets wrong (e.g., failures, 
anomalies).  

• Explain how the AI works to other people.  
• Correctly assess whether a system determination is 

correct, and thereby have appropriate trust.  
• Judge when and how to rely on the AI even while 

knowing the boundary conditions of the 
competence of the AI, and thereby having 
appropriate reliance.  

 Experiments will have to evaluate the learning 
that occurs during training as well as during 
performance. These experiments will have to take 
into account the difference between global and local 
explanations. These key variables are modeled in 
Figure 1, which appears following the References. 

 
DEVELOPING A NATURALISTIC MODEL 

   Another aspect of our effort in XAI is to 
develop a “naturalistic” model of explanation based 
on the analysis of a corpus of cases in which people 
create explanations of complex situations or systems. 
The trigger for local explanations is typically a 
violated expectancy. “Why did it do that?” signifies a 
surprise, and calls for an account to revise the 
violated expectancy. And this process requires the 
explainer to diagnose what user expectations need 
revision — where is the learner's mental model 
flawed or incomplete. Second, many AI systems start 
with a complete account and then try to whittle this 
account down into something manageable, but if the 
trigger for a local explanation is a violated 
expectancy then the process of explaining is aimed at 
the flawed expectancy, and no whittling down is 
needed. Third, what is the stopping point for 
explaining something? AI systems do not have a 
clear stopping point whereas our initial review of 
naturalistic cases suggests that the stopping point is a 
perspective shift in which the user moves from “Why 
did it do that?” to “Now I see that in this situation I 
would have done the same.” The current state of art 
for AI systems does not take perspective shifts into 
account. 
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Figure 1.  Explanation spans the training and performance contexts, but 

 in doing so requires different  kinds of explanation.
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