
H u m a n - C e n t e r e d C o m p u t i n g

trade-offs, and design rationale and make these lessons
learned widely available for off-the-shelf use. They can
also enhance developers’ vocabulary—for example, by
easing the transition to object-oriented programming.2

Conventionally, patterns consist of four elements: a name,
the problem to be solved, the solution to the problem (often
termed the refactored solution), and the consequences of the
solution. Numerous sets of patterns (collectively known as
pattern languages) exist for software design, analysis, man-
agement, and so on; a Web search on “pattern language”
yields many hits.

Shortly after the notion of design patterns emerged,
practitioners began discussing problem-solution pairs in
which the solution did more harm than good.3,4 These
have come to be known as antipatterns, and they are well
known in the design and management communities.

Antipattern examples
In 1998, researchers discussed three kinds of antipatterns:

design, architectural, and management.2 More recently, Phil
Laplante and Colin Neill introduced 27 environmental an-
tipatterns, which describe toxic work situations that can lead
to organizational or project failure.5 For example, the boiled
frog syndrome discussed in this department a few years ago
describes a situation in which an organization’s members
cannot perceive a slow loss of organizational expertise

because of the subtlety of the changes.6 Another example is
the procurement problem, discussed in this department last
year.7

Anyone can declare an antipattern—it’s just a matter of
whether others accept it. The pattern community relies on a
“rule of three” before a new pattern or antipattern is gener-
ally accepted; that is, someone must have experienced and
reported each pattern or antipattern (and a successful refac-
toring) in three separate instances (www.antipatterns.com/
whatisapattern).

Many antipatterns take the form of cautionary tales about
how day-to-day activities in human organizations can have
serious repercussions. Examples include

• Email Is Dangerous—we’ve all wished we could re-
trieve one we’ve sent; and

• Fire Drill—months of monotony followed by a crisis,
then more monotony.

Several management antipatterns remind us of Dilbert
cartoons about bad business management practices:

• Intellectual Violence—using a buzzword or arcane tech-
nology to intimidate others. Because no one really under-
stands the technology, methodology, or practice, dismiss-
ing it is difficult.

• Blowhard Jamboree—too many industry pundits influ-
encing technology decisions.

• Viewgraph Engineering—too much time spent building
flashy presentations for customers and managers rather
than working on the software.

• Death by Planning—too much planning, not enough
action.

• Throw It over the Wall—management forces the latest
practices or tools on the software staff without buy-in.

Other antipattern classes refer more specifically to pro-
cesses in the development of information technology, es-
pecially intelligent systems. There are two reasons why
we can use human-centered computing to analyze anti-
patterns and examine the antipattern literature to see if
any design challenges or regularities of complex cogni-
tive systems might lie therein:

• antipatterns fall at the intersection of people, technol-

Adesign pattern is a named problem-solution pair

that enables large-scale reuse of software architec-

tures or their components (that is, interface designs1). Ide-

ally, patterns explicitly capture expert knowledge, design

Antipatterns in the Creation
of Intelligent Systems

Phil Laplante, Pennsylvania State University
Robert R. Hoffman, Institute for Human and Machine Cognition
Gary Klein, Klein Associates Division of ARA

JANUARY/FEBRUARY 2007 1541-1672/07/$25.00 © 2007 IEEE 91
Published by the IEEE Computer Society

Editors: Robert R. Hoffman, Patrick J. Hayes, and Kenneth M. Ford
Institute for Human and Machine Cognition, University of West Florida
rhoffman@ai.uwf.edu

ogy, and cognitive work (including the
work of creating new intelligent tech-
nologies); and

• antipatterns’ negative consequences
tend to involve making systems toxic
(that is, unusable) for humans.

Table 1 presents two classes, program-
ming development antipatterns and archi-
tecture antipatterns.

Two new classes
Here, we add two new classes to the ros-

ter: procurement antipatterns and unintelli-
gent-systems antipatterns (see tables 2 and
3). Many of these derive from recent experi-
ence in cognitive systems engineering.

Procurement antipatterns
One procurement antipattern we see far

too often is Buzzword Mania. Sponsors of
research and development programs ask for
the world, and providers gladly promise it,
using jargon-laden phrases that no one really

understands, such as the following: “[insert
acronym here] will provide near-real-time
interoperability using a robust framework
leveraging a multimatrix solution to infer-
ence that will use adaptive configuration
management to ensure ….”

Note the widespread use of the word
“will” when in fact the proposer should
use words such as “might” or “could,” or
even more honestly, “we hope will.” Alas,
we have no clear cases of successful refac-
toring to point to, but we are hopeful that
some are out there.

Unintelligent-systems antipatterns
Unintelligent systems purport to provide

“intelligent” functionality through some
combination of hardware and software but
are really created by relying on designer-
centered design rather than on the empirical
realities of cognitive work and sociotech-
nical organizations. Such systems require
significant numbers of workarounds and
kluges; at worst, they’re useless.

Unintelligent-systems antipatterns differ
from poor design—they are ways in which
machines actually make people dumb. We’ve
seen the consequences of unintelligent-
systems antipatterns many times. Here are
just two examples:

• The FBI spent a lot of money to develop
the Trilogy system as a part of an informa-
tion technology modernization program.
The resulting software doesn’t support the
analysts’ “operational needs”—that is, the
actual cognitive work they do.8

• In the aftermath of the destruction of the
World Trade Towers, massive amounts
of funding have gone into creating new
software systems to aid intelligence ana-
lysts’ work. A new generation of tech-
nologists was led to believe that analysts
need systems to help them overcome
human limitations. This opinion was
based on an older psychology theory9

that describes cognition in terms of
dozens of reasoning biases, such as the

Table 1. Some programming development and architecture antipatterns.

Programming development
Name Description Negative consequence

Lava Flow Dead code and forgotten design information, Unfixable bugs
frozen in an overall design that is itself constantly changing

Poltergeists Proliferation of classes Slower code

Spaghetti Code Use of GOTO statements and obfuscating code structures Code that is difficult to understand and maintain

The Blob Procedural design leading to one giant “God” class Code that is difficult to understand and maintain;
loss of object-oriented advantages

Functional Structural programming in an OO language Loss of OO advantages
Decomposition

Golden Hammer Using the same design over and over again Suboptimal designs
(“If all you have is a hammer, everything is a thumb.”)

Metric Abuse Naive or malicious use of metrics (for example, using the Unanticipated consequences; inability to control the project;
wrong metric or choosing a metric to get back at someone) fear, uncertainty, and doubt

Road to Nowhere Regarding plans and requirements as rigid roadmaps; Creating superficial plans such as Gantt charts and PERT
development teams failing to adapt (Program Evaluation and Review Technique) charts to depict

event sequences as if plans are actually followed; as artifacts,
plans aren’t a substitute for the evolving activity itself

Architecture
Name Description Negative consequence

Architecture Lack of architectural specifications Difficulties in maintaining and extending the system
by Implication for a system under development

Design by Committee Everything but the kitchen sink Political or policy factors dominating technical issues

Reinvent the Wheel Failure to use acceptable existing solutions Increasing cost and time to delivery

Stovepipe System Legacy software with undesirable qualities Difficulty in understanding and maintaining the system

Vendor Lock-In Captive system(s) with mandated legacy components Higher overall cost, loss of flexibility, and systems hostile
to users

Penny Foolish Focusing on short-term cost considerations Burden is placed on the users, who have to kluge
around hostile software.

92 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS92 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

disconfirmation bias or the base rate fal-
lacy.10 The new software systems en-
courage (we might say force) analysts to
juggle probabilities and evaluate likeli-
hoods, all for the sake of shoehorning
reasoning into a “rational” mode, such
as Bayesian inference. Word on the
street seems to be that analysts simply
don’t like the tools. The tools have little
apparent value-added for the analyst and
create what is perceived to be a consid-
erable amount of make-work.11

We present three salient unintelligent-
systems antipatterns, which we’ve adapted
from Gary Klein’s work.12

The Man behind the Curtain (from the
Wizard of Oz). Information technology
usually doesn’t let people see how it rea-
sons; it’s not understandable.13 If human
users can’t understand and their easiest
path is to accept the machine’s judgment,
they are opted out of opportunities to prac-
tice their own mental model formation and
evaluation skills. We aren’t suggesting that
all users must always be able to see how
code is executing. But we’ve seen many
cases where algorithms’ mysteries nullified
the potential benefits from human reason-
ing and collaboration:

The [US] Air Force developed [AI] programs
to generate Air Tasking Orders. Ordinarily,
generating ATOs takes days ... the program
could produce one in just hours The Air
Force planners, however, did not like the new
system [When we investigated how the
planners made ATOs] we did not observe any-
one evaluating an ATO once it was finished,
but we did see planners evaluating the ATO
while it was being prepared. One planner
would suggest an approach, others would de-
bate the suggestion, perhaps make some im-
provements. When the ATO was finished, the
planning team would have a thorough appre-
ciation for the nuances …. But when the [AI]
software produced the ATO, the users lost
their opportunity to conduct an evaluation,
with no way to appreciate the rationale behind
the order. (p. 263)12

Hide-and-Seek. On the belief that decision-
aids must transform data into information and
information into knowledge, data are actually
hidden from the decision maker. The negative
consequence of this antipattern is that deci-
sion makers can’t use their expertise. The fil-
tering and transforming of data, for the sake
of protecting the decision maker from being
overwhelmed, prevents the decision maker
from drilling down and forces him or her to
rely on other people’s (or machines’) deci-
sions. On the belief that computers can mira-
culously present the decision maker with “the
right information at the right time,” data are

(in one way or another) filtered into essential
versus nonessential categories (on the basis
of the judgments of the software designer—
the person behind the curtain). The decision
maker sees only the information that the
computer (as a stand-in for the designer)
thinks are important. Ideally this filtering is at
least done in a smart, context-sensitive way,
but however it is done, there is always a risk
of turning humans into passive recipients.
Experts like to be able to control their own
searching and learning, and with good
reason. We have seen many instances where
experts did not believe the massaged data,
went back to search the raw data, and made
decisions—correct decisions—that differed
from those coughed up by the computer, or
by other decision makers who weren’t skepti-
cal and didn’t do their own drill-down.

One of the expert weather forecasters we fol-
lowed complained bitterly about a new com-
puter system that had replaced his old machine.
The new system could show trends and plot
curves and do all kinds of computer tricks. And
that was the problem. If the temperatures in a
region were very variable, some high and some
low, the computer would smooth these out to
provide a uniform temperature curve for the re-
gion. The program developers had wanted to
provide operators with a sense of the trends,
and to do that they had filtered out the “noise.”
But the expert had always depended on seeing

Table 2. Five procurement antipatterns (adapted from W.H. Brown et al.2).

Name Description Negative Consequence

Fools Rush In Rushing to use a new methodology, tool, or platform. The IT Usually the “latest and greatest” is based
and software development world is ever-changing, and new more on hype than trusted evidence—
ideas, technologies, methodologies, and practices arise all more “sizzle” than “steak.”
the time. Being one of the earliest adopters is often unwise.

Emperor’s New Those who perceive instances of Buzzword Mania are inhibited Overly aggressive use of demonstration
Clothes (also known from speaking up. No one wants to point out the obvious, systems for sales purposes. The sponsor
as Smoke and Mirrors) embarrassing truth about a situation or claim. It’s often convenient is sold a bill of goods. The truth emerges,

to lay our hopes on a technology or methodology about which we finally when users start using the new
know little, thereby providing plausible hope for a miracle. software.

Metric Madness (also Evaluating software systems by measuring easily measured Failure to look at things that are hard to
known as John Henry things (such as efficiency, accuracy, and raw productivity) measure but critical (such as accelerating
and the Seam Hammer) and generally regarding the human user as an output device. the achievement of expertise, facilitating

problem recognition, coping with goal
trade-offs, and reinforcing intrinsic
motivation)

The Rolling Stone Evaluation by satisficing (some people like it, more or less, some Failure to objectively, empirically
(also known as I Can’t of the time) based on one-off and superficial interviews, with little investigate usability and usefulness issues.
Get No Satisfaction) awareness of issues of interviewing (such as biasing) or the effect

of task demand characteristics. Is someone who has invested time and
effort in building a system really going to fess up and say “It’s lousy”?

Potemkin Village (Around A fancy but superficial facade hides substantial defects or Highly staged demos and presentations;
1772, Potemkin built a façade shortcomings. People reach for a solution before the problem is even reluctance to let the customer “look under
village to fool Catherine the fully described. Many tool sets, frameworks, and off-the-shelf the hood;” systems that don’t do anything
Great into thinking that all products allow for the quick manufacture of sophisticated-looking useful and end up collecting dust.
was well in the poverty- solutions but fail to promote robust designs and belie proper
stricken Ukraine.) testing throughout the life cycle.

JANUARY/FEBRUARY 2007 www.computer.org/intelligent 93

these areas of turbulence. To him, they signaled
some sort of instability. Whenever he saw this
cue, it triggered a reaction to watch these fronts
much more carefully because it was a sign that
something was brewing. As this forecaster said,
“In reality, the fronts ‘wiggle’as they move
across the land. And it’s in those whorls and
wiggles that weather happens.” The new system
had erased this cue, making him less sensitive
to the way the weather was developing and
hurting his ability to do his job. (p. 252)12

As we suggested in the essay on sense-
making in this department,14 only human
minds can drill down to find out what the
right cues are in the first place, especially
in non prototypical situations.

The Mind Is a Muscle. In the attempt to
acknowledge human factors in the procure-
ment process, some guidelines end up actu-
ally working against human-centering con-
siderations: “Design efforts shall minimize
or eliminate system characteristics that re-
quire excessive cognitive, physical, or sen-
sory skills.”15 We find this astounding—that
information systems should, in effect, pre-
vent people from working hard and thereby
progressing along the continuum of pro-
ficiency. Ample psychological evidence
shows that we achieve expertise only after
lots of “deliberative practice,” in which
we’re intrinsically motivated to work hard
and work on hard problems.16

Information technology can diminish the active
stance found in intuitive decision makers, and
transform them into passive system operators.
Information technology makes us afraid to use
our intuition; it slows our rate of learning …
passivity is bad enough but it can degenerate to
the point where decision makers assume that
the computer knows best … they follow the
system’s recommendations even in those cases
where their own judgment is better than the
system’s solution. (p. 265)12

Recognizing unintelligent-systems anti-
patterns and giving them names might lead to
system remediation more quickly, or at least
the chance that a repository of lessons learned

might be put to some use. And the advantages
of avoiding unintelligent-systems antipatterns
altogether is clear—successful system deliv-
ery, reduced costs in the long run, and reduced
user frustration. In the spirit of what we might
call the Penny Foolish antipattern (see table
1), reduced costs must include the human
costs that are incurred after systems are “deli-
vered”: the costs to users in terms of frustra-
tion, the costs to human resources in terms of
retraining personnel. Instead of computing the
total cost of ownership, sponsors should calcu-
late the total human cost of ownership by tak-
ing into account factors such as (re)training
costs, costs of worker turn-around, costs of
loss of expertise, and so on.

How can unintelligent-systems antipat-
terns be refactored? In some cases, unfortu-
nately, refactoring involves throwing away
or completely redesigning the system. In
some cases, we can perhaps, just perhaps,
repurpose the system’s intent. Only by con-
ducting cognitive task analysis in the first
place can we have a path to creating human-
centered systems that are useful, usable,
and understandable and that help in grow-
ing expertise and maturing the cognitive
work. This is true for many of the antipat-
terns we have mentioned in this essay: Only
by doing it right the first time do we have a
chance at a solution. Thus, we conclude
with one unintelligent-systems antipattern,
called Shoeless Children (see table 3).

In IT and software development, com-
mentators and luminaries have long advo-
cated the pursuit of excellence and the ap-
plication of best practices. In recent years,
however, what we have seen is a weakened,
tacit view that “best is the enemy of good
enough.” Perhaps we misconstrue the true
sentiment, but to suggest that computer sci-
entists provide or offer anything but their
best in any situation seems alien to most peo-
ple. We would accept “best, time permitting”
as a compromise, but never that the best is
the enemy of good enough, or that the goal,
especially for intelligent systems, is to be
merely good enough.

References

1. T. Stanard et al., “HCI Design Patterns for C2:
A Vision for a DoD Reference Library,” State-
of-the-Art Report, Air Force Research Labo-
ratory, Wright-Patterson Air Force Base,
2006.

2. W.H. Brown et al., Anti Patterns: Refactor-
ing Software Architectures and Projects in
Crisis, John Wiley & Sons, 1998.

3. C.A. Dekkers and P.A. McQuaid, “The Dan-
gers of Using Software Metrics To (Mis)Man-
age,” IT Professional, Mar./Apr. 2002, pp.
24–30.

4. T. DeMarco, Why Does Software Cost So
Much? Dorset House Publishing, 1995.

5. P.A. Laplante and C.J. Neill, Antipatterns:
Identification, Refactoring, and Management,
Auerbach Press, 2006.

6. R.R. Hoffman and L.F. Hanes, “The Boiled
Frog Problem,” IEEE Intelligent Systems,
July/Aug. 2003, pp. 2–5.

7. R.R. Hoffman and W.C. Elm, “HCC Implica-
tions for the Procurement Process,” IEEE In-
telligent Systems, Jan./Feb. 2006, pp. 74–81.

8. J.C. McGraddy and H.S. Lin, eds., A Review
of the FBI’s Trilogy Information Technology
Modernization Program, tech. report, Com-
puter Science and Telecommunications Board
Div. on Eng. and Physical Sciences, Nat’l
Academies Press, 2004.

9. R. Heuer, Psychology of Intelligence Analysis,
Central Intelligence Agency, 1999.

10. J. Flach and R.R. Hoffman, “The Limitations
of Limitations,” IEEE Intelligent Systems,
Jan./Feb. 2003, pp. 94–97.

11. B. Moon, A.J. Pino, and C.A. Hedberg,
“Studying Transformation: The Use of Cmap-
Tools in Surveying the Integration of Intelli-
gence and Operations,” Proc. 2nd Int’l Conf.
Concept Mapping, 2006, pp. 527–533; avail-
able from proteaed@cariari.ucr.cr.

12. G. Klein, Intuition at Work, Doubleday, 2003.

13. D.D. Woods and E. Hollnagel, Joint Cogni-
tive Systems: Patterns in Cognitive Systems
Engineering, CRC Press, 2006.

94 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

Table 3. An unintelligent-systems antipattern.

Name What happens Negative consequence

Shoeless Children In some cases, systems engineers conduct what we might call cognitive task analysis, Systems that aren’t usable,
(The shoemaker is too but they use weak methods (such as interviewing) that are not rich and continuous useful, or understandable;
busy earning a living throughout project development. In other cases, where cognitive systems engineers systems that force users
to make shoes for his are involved, they aren’t given sufficient time or resources to use their expertise. In both into a make-work mode far
own children.) cases, the result is that the development team is deprived of the use of and potential too much of the time and

benefit from the tools needed to do the job right, usually in the guise of conservation. require significant numbers
of kluges and workarounds.

14. G. Klein, B. Moon, and R.R. Hoffman, “Mak-
ing Sense of Sensemaking 1: Alternative Per-
spectives,” IEEE Intelligent Systems, July/
Aug. 2006, pp. 22–26.

15. Mandatory Procedures for Major Defense
Acquisition Programs and Major Automated
Information Systems Acquisition Programs,
instruction 5000.2-R, US Dept. of Defense,
1996, paragraph C5.2.3.5.9.1.

16. K.A. Ericsson, R.Th. Krampe, and C. Tesch-
Römer, “The Role of Deliberate Practice in
the Acquisition of Expert Performance,” Psy-
chological Rev., vol. 100, 1993, pp. 363–406.

JANUARY/FEBRUARY 2007 www.computer.org/intelligent 95

Robert R. Hoffman is a senior research sci-
entist at the Institute for Human and Machine
Cognition. Contact him at rhoffman@ihmc.us.

Phil Laplante is a
professor of soft-
ware engineering at
Pennsylvania State
University. Contact
him at plaplante@
psu.edu.

Gary Klein is chief
scientist in the Klein
Associates Division
of Applied Research
Associates. Contact
him at gary@
decisionmaking.
com.

EDITORIAL CALENDAR
2007

Intelligent Systems

WWW.COMPUTER.ORG/INTELLIGENT

January/February: AI’s Cutting Edge
This issue will examine a variety of topics at the forefront of AI research, including nat-
ural language processing, data mining, planning systems, intelligent transportation sys-
tems, and evolutionary computing.

March/April: Interacting with Autonomy
For at least the foreseeable future, people will still need to interact with autonomous sys-
tems at various levels of involvement as conditions change dynamically. This special
issue will present articles on human interaction with autonomous or semiautonomous
physical systems such as ground-based robots, unmanned aerial vehicles, and assistive
technologies.

May/June: Recommender Systems
Recommendation problems have a long history as a successful AI application area. The
interest in such systems has dramatically increased owing to the demand for personal-
ization technologies by large, successful e-commerce applications. This special issue
will report on successful implementations and on future research directions in recom-
mender technologies.

July/August: Intelligent Educational Systems
The distributed nature of 21st-century education poses strong demands for intelligent
educational systems tailored to students’ and teachers’ individual needs. This special
issue will discuss novel methods, tools, and applications addressing this field’s key
challenges, such as semantic interoperability, context-sensitive feedback generation,
and personalized content delivery and generation.

September/October: Social Computing
This special issue will investigate the development and use of social software—tools
and computing methods that support social interaction and communication in signifi-
cant application domains. It will also feature articles describing general intelligent sys-
tems (not necessarily social software) that leverage insights and findings from social,
organizational, cultural, and media theory.

November/December: Argumentation Technology
Formal models of argumentation have been gaining increasing importance in AI and
have found a wide range of applications. This special issue will report on the state of
the art of AI-based argumentation applications, focusing on deployed systems or pilot
systems that provide promising techniques and ideas.

Bringing You the Latest Artificial Intelligence Research

IE
EE

www.computer.org/intelligent

Visit us on
the Web

Visit us on
the Web

IE
E

E

