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The Concept of Statistical Significance 
 
This concept is characterized by disagreements among statisticians and scientists, with some 
arguing that tests of statistical significance actually harm scientific progress because of faulty 
interpretations (e.g., Armstrong,  2007; Glaser, 1999; Kline, 2004 Ch. 3). Hence, many suggest 
shifting from significance testing to evaluation in terms of confidence intervals or prediction 
intervals. Another criticism is that the concept of statistical significance is often subject to 
misinterpretation by non-statisticians (see Gigerenzer, 2004; Wasserstein and Lazar, 2016).  
 
In the tradition established by Ronald Fischer and Karl Pearson, among others, statistical 
significance is understood as a difference between means expressed as some proportion of the 
standard deviation, a difference which is transformed to values of a probability integral (that is, a 
continuous dimension of numbers falling between zero and 1.00). This is interpreted as the 
probability that the difference is due to chance. If the probability is high, the sample means are 
believed to be indistinguishable from the estimated mean of the hypothetical population from 
which the samples might have been drawn. If the probability is low, the sample means are 
believed to represent some effect, that is, the samples are not representative of some single 
hypothetical population from which the samples might have been drawn. 
 
For one extreme or ideal case, the difference is infinitesimal with regard to the probable error, in 
which case the likelihood of the difference is essentially zero and one can conclude with 
confidence that the difference is not random. The sample means are believed to represent some 
effect, that is, the samples are not representative of a single hypothetical population from which 
the samples might have been drawn. In the other ideal case, the difference is infinite with regard 
to the probable error, in which case the likelihood of the difference is essentially 1.00 and one 
can conclude with confidence that the difference is random.  
 
But... 
 
Why 5% and 1%? 
 
Claims that one or another psychological paradigm is flabby or heretical seem to roar themselves 
upon the stage on an occasional basis. Thus, today we see the imposition of requirements to pre-
register hypotheses and conduct power analyses, and other procedures that sometimes actually 
seem to stifle scientific activity. One way that this yearning for scientific holiness has manifested 
itself is in the reliance on statistical significance.  
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The general tenet is that in order for the results of an experiment to be scientifically acceptable 
and the results determined to provide genuine evidence of a cause-effect relation between 
independent and dependent variables, there must be some form of parametric statistical test with 
a primary statistic having an associated probability of 5% or less, showing that the result reflects 
something other than random variation within the population that has been sampled. We love it if 
(and only if) the t-test or F-test yields p < 0.01 or p < 0.05.  Probability less than 0.01 is better, of 
course. One often sees experimental reports in which the authors bemoaned the failure to attain 
such specific probability levels, and then point out something like "While the value of p = 0.07 
did not attain statistical significance, the difference was in the expected direction" or some such 
waffling that admits, merely, "Gee whiz, we'd really like to believe we found the result we were 
looking for." 
 
The question is not just why so specific, but why so why so strict?   
 
The answer to this question, and its pertinence to the science of psychology, begins in 1880. In 
that year, and five years prior to his publication of Über das Gedächtnis (“On Memory”), 
Herrmann Ebbinghaus had submitted to Berlin University a document satisfying the 
requirements of an Habilitaiton, qualifying him to be a university lecturer (Privatdozent). This 
Habilitationschrift was essentially a draft of Über das Gedächtnis. (For a detailed run-down on 
the experiments Ebbinghaus conducted, see Hoffman, et al., 1987.) But the Habilitationschrift, 
and the draft manuscript of "On Memory" (Uhrmanustript), elaborated material that was only 
footnoted in the eventual book (see Footnote 1 in Chapter IV). In a clear stroke of genius, he 
presented an empirical case for the claim that psychology could be a science. He compared the 
average deviation (then called "probable errors") (see Chapter II, Sections 5, 10) that he obtained 
for his list learning experiments with probable errors that had been reported in the physical and 
biological sciences—Hermann von Helmholtz's measurements of the speed of neural conduction, 
and James Prescott Joule's measurements of the mechanical equivalent of heat. In fact, 
Ebbinghaus' probable errors of about seven percent were an order of magnitude smaller than the 
physical measurements and very close to those for the biological measurements. 
 
It is no surprise that Ebbinghaus was praised for his rigorous program of experiments on 
memory. Indeed, the praise that was laid upon him after publication of Über das Gedächtnis 
includes recognition that psychology had arrived, as a genuine science independent from its 
philosophical origins (see for example, James, 1885). Thanks largely to this thing called the 
probable error. 
 
The next development, also particularly linked to psychology, was the determination of a metric 
for differences on this scale of the probable error. How much of a difference makes a difference?  
 
Through the late 19th and early 20th centuries there was actually considerable discussion and 
debate of the issue of what would be good or best criterion levels (2%, 3.25%, 7%, and even 
20%) for determining scientific significance, and whether one should refer to results that are 
"almost" significant or "highly significant," or "very improbable" (see Cowles and Davis, 1982; 
Stigler, 2008). There were even more cumbersome attributions, such as "not very improbable 
that the observed frequencies are compatible with a random sampling" (Pearson, 1900, p. 171). 
Dublin brewer William Gosset, writing using the pen name Student (1908), published his method 
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called the t-test, saying "three times the probable error in the normal curve, for most purposes, 
would be considered significant" (p. 18). Debate continued through the 20th century (see Yule 
and Kendall, 1950), but the die had been cast by Pearson. Apparently, he did not feel that the 
0.10 level was strict enough, and did feel that 0.01 was convincing. And 0.05 falls between these 
values (see Cowles and Davis, 1982) (See Note 1, below.)   
 
In 1935, Ronald Fisher introduced methods of analysis of variance, a significant advance in 
statistics. Fisher also expressed differences as a proportion of the standard deviation, rather than 
the probable error.  
 

Odds of about 20 to one, then, seem to have been found a useful 
social compromise with the need to allow some uncertainty, a 
compromise between (say) 0.20 and 0.0001. That is, 5% is 
arbitrary (as Fisher knew well), but fulfills a general social 
purpose. People can accept 5% and achieve it in reasonable size 
samples, as well as have reasonable power to detect effect-sizes 
that are of interest... One may consider the formatting of [Fisher's] 
tables as a brilliant stroke of simplification that opened the arcane 
domain of statistical calculation to a world of experimenters and 
researcher workers who would begin to bring statistical measure to 
their data analyses (Stigler, p. 12). 
 

Cowles and Davis (1982) speculated that the 0.05 level was not arbitrary.  
 

... the conventional rejection level of three times the probable error 
is equivalent to two times the standard deviation (in modern 
terminology a z-score of 2), which expressed as a percentage is 
about 4.56%... one may hazard a guess that Fisher simply rounded 
off this value to 5% for ease of explanation... 5% could be more 
easily digested by the uninitiated than the report that the result 
represented a z-score of approximately 2 (p.557). 

 
The argument was that a probability of one-in-twenty would be in most scientist's comfort zones 
for rejecting the null hypothesis. The entrenchment of this metric, spoon fed to generations of 
psychology majors, has left the field in a somewhat closed-minded state about this notion of 
"significance."  This is the way we do it. Period. 
 
But... 
 
It has been understood for decades in the field of statistics that statistical significance, in the 
sense of null hypothesis significance testing, can be readily achieved by merely increasing the 
sample size: 
 

If the normal curve is fitted to a body of data representing any real 
observations whatever of quantities in the physical world, then if 
the number of observations is extremely large-for instance, on the 
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order of 200,000-the chi-square p will be small beyond any usual 
limit of significance (Berkson, 1938, p. 526). 

 
And what we see today in many research programs is the mindless requirement for power 
analysis in order to determine in advance how many "subjects" are needed to give one sufficient 
confidence that any difference between group means will achieve statistical significance. (The n 
is usually frighteningly large, and this feeds into the senseless drive to make science easy by 
having Mechanical Turk do all the work). 
 
Keeping in mind that t-test and ANOVA results reference differences between means, one can 
acquire data on control and experimental groups where there is a slight but statistically 
significant difference between means, yet the frequency distributions of the two groups show an 
amazing degree of overlap. Figure 1 below is a case in point —based on real data (not collected 
by me, I should point out). The x-axis is a performance measure (proportion correct on the 
primary task), blocked over sub-ranges. The difference is statistically significant: One can see 
that the average for the Control condition (black histobars) is pulled towards the left by the high 
frequency at proportion correct = 0.33. But one can also see that a considerable number of 
participants in the Control condition performed better than a considerable number of participants 
in the Experimental condition.   
 

 
 

Figure 1. Frequency distributions that seem approximately "normal."  Black 
histobars = Control Condition; Purple histobars = Experimental Condition. 

 
Figure 2 below also presents actual frequency distributions, also with a statistically significant 
difference. But for "real" data such as we see here, it is unclear that the mathematical average is 
the best measure of central tendency, as illustrated by the distribution for Experimental 
condition.  Indeed, in this example the very concept of a single best measure of central tendency 
gets called into question. And if the average is not a best measure of central tendency, is the 
standard error is a good measure of variability?  
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I have been collecting data sets (some with very large n, I should point out), and have done 
something that researchers (apparently) never do: Create and examine their actual frequency 
distributions. The inescapable conclusion is this:  The normal curve is not normal. The only 
thing that comes to the researchers' rescue is the Central Limit Theorem, but the paradigm of 
parametric null hypothesis nevertheless runs head-long into its own assumptions. To paraphrase 
T.H. Huxley, we see here 'the slaying of a beautiful paradigm by ugly facts.' 
 

 
 

Figure 2. Frequency distributions very often do not seem even approximately 
"normal."  Black histobars = Control condition; Blue histobars = Experimental 
Condition. 
 

 
Conclusion 
 
Statistics as a field is wide-open for innovation. The world we see, and study, does not orbit in 
some sort of gravitational dependence on parametric statistical tests of the null hypothesis. 
Statistical analysis is an exploratory activity. It is not, as some might wish, a means of 
calculating proper scientific judgments and decisions. F-ratios and t-tests are not a means of 
abrogating responsibility. They are exploratory tools. 
 
In 1919, prominent experimental psychologist Edwin G. Boring raised some concerns about the 
then-new statistical procedures with respect to their experimental contexts. He concluded his 
discussion with a distinction between statistical and scientific significance: "Statistical ability, 
divorced from a scientific intimacy with the fundamental observations, leads nowhere" (p. 338).  
But Boring's suggestion itself does lead somewhere—to the concept of practical significance, 
which is hinted at in Figures 1 and 2. Can there be a means of calculating practical significance? 
This will be a topic for a forthcoming Concept Blog.  As a tease, the answer is "yes." 
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A Final Thought 
 
It is ironic that parametric statistical analysis and the achievement of statistical significance are 
regarded as a main aspect of "objective" science, distinguishing science from subjectivity. The 
irony is that the significance metric is relied upon by countless thousands of people, when the 
0.05 and 0.01 levels were decided by a debate among just a few people, a debate centered on  
their individual judgments. All measures are determined by a consensus group, be it large or 
small, in an aggregation of the "subjective" judgments of individuals. All measures have 
objective and subjective characteristics (see Annett, 2002; Hoffman, 2019; Muckler, 1992) 
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