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Abstract— For achieving significant levels of autonomy,
legged robot behaviors require perceptual awareness of both
the terrain for traversal, as well as structures and objects in
their surroundings for planning, obstacle avoidance, and high-
level decision making. In this work, we present a perception
engine for legged robots that extracts the necessary information
for developing semantic, contextual, and metric awareness of
their surroundings. Our custom sensor configuration consists of
(1) an active depth sensor, (2) two monocular cameras looking
sideways, (3) a passive stereo sensor observing the terrain,
(4) a forward facing active depth camera, and (5) a rotating
3D LIDAR with a large vertical field-of-view (FOV). The
mutual overlap in the sensors’ FOVs allows us to redundantly
detect and track objects of both dynamic and static types.
We fuse class masks generated by a semantic segmentation
model with LIDAR and depth data to accurately identify and
track individual instances of dynamically moving objects. In
parallel, active depth and passive stereo streams of the terrain
are also fused to map the terrain using the on-board GPU. We
evaluate the engine using two different humanoid behaviors, (1)
look-and-step and (2) track-and-follow, on the Boston Dynamics
Atlas.

I. INTRODUCTION

Legged robots such as bipedal and quadrupedal robots
boast the ability to perform various behaviors that are either
impossible or highly challenging for other robot forms to
achieve. Legged robot behaviors include walking over rough
terrain, climbing stairs, opening doors, moving heavy loads,
engaging in co-manipulation tasks, as well as freestyle
athletics. However, achieving high-level behaviors such as
those performed routinely by humans, requires robust and
reliable awareness about the surrounding environment with
reasonably high-level understanding of the world. Humans
daily go through an enormous variety of environments, such
as morning hygiene routines, navigating buildings, driving
vehicles, and cooking food. All such tasks require humans
to subconsciously track various objects and activities in their
surroundings, such as, vehicles on roads, other humans in
the environment, open doors, walls, stairs, etc. However,
seemingly effortless tasks performed by humans can be
very challenging to achieve for robots, at least from the
perspective of environmental awareness. Being able to suc-
cessfully track objects and events is an essential part of
robot perception, and requires a pipeline for extracting and
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Fig. 1: Multi-Sensor Head on Atlas (first-row), combined im-
age from Logitech Brio and D435 color streams (second-row),
combined semantic mask for the image above (third-row), and
screenshot of the track-and-follow behavior user interface (fourth-
row) for both flat-ground (left) and rough terrain (right).

processing both metric and semantic information from sensor
data.

In this work, we present a semantic-metric method for
perceptual awareness of legged robots in indoor environ-
ments, leveraging a custom designed and highly redundant
multi-sensor head. We develop a system for tracking multiple
semantically meaningful objects in 3D metric space over a
large field-of-view using the novel sensor-head. An overview
of the sensor head on Atlas, sensor fusion, semantic seg-
mentation, and high-level behaviors is shown in Fig. I. We
evaluate the system by performing look-and-step and track-
and-follow behaviors with the Boston Dynamics DRC Atlas,
both while walking on flat-ground and on rough terrain. The
primary contributions of this paper are:

1) Custom and highly redundant sensor-head with three
monocular cameras spanning a large FOV, an active
depth sensor, a rotating LIDAR, and a passive stereo



Fig. 2: Multi-Sensor Head Configuration with relative transforms and sensor mount positions for side-cameras (Logitech Brio 4K), active
depth camera (Intel RealSense D435), stereo pair (ZED 2), and LIDAR on top (Ouster OS0-128). The on-board computer inside the
casing is a Minisforum H31G MiniPC. The complete sensor head was designed for maximizing effective field-of-view on all sensors.

pair.
2) Fused semantic segmentation of both LIDAR point-

cloud and color images simultaneously from three
camera streams at 8-10 Hz.

3) Three-dimensional Multiple Object Tracking (MOT)
framework to track multiple moving entities over a
large FOV.

4) In our knowledge, the first work on human-following
behavior for bipedal humanoid robots that can follow
humans over both flat-ground and rough terrain envi-
ronments.

II. RELATED WORK

Bipedal humanoid robots have the mobility to traverse
complex terrains and cluttered environments, but require a
higher level of complexity in their perception and planning
systems to achieve this goal. Simultaneously, performing
high-level and meaningful behaviors over rough terrain re-
quires another layer of robustness associated with semantic
understanding of the world. To the best of our knowledge,
we are the first to present a perception engine for achieving
semantically meaningful and high-level behaviors, such as
person-following, for a bipedal humanoid robot while even
moving over rough terrain. Therefore, the related work can
broadly be classified into two main areas: (1) works on
multi-sensor fusion for developing semantic understanding of
the world, and (2) previous approaches to person-following
behavior on legged or humanoid robots.

1) Sensor Fusion for Semantic Understanding: Semantic
scene understanding has been explored by several works in
the past. A theme in a subset of such papers has been to
extract geometric primitives from sensor data as building
blocks before further higher-level processing. The approach
taken by Grotz et al. [8] first extracts geometric primi-
tives such as planes, cylinders and spheres from RGB-D
point-cloud using the Locally Convex Connected Patches
(LCCP) algorithm, and fuses the geometric primitives spatio-
temporally. In parallel, the input color images are used to
extract semantic 2D bounding boxes using the YOLO object
detection algorithm, which are then combined with geomet-
ric primitive information spatially into a scene-graph for

inferring higher semantic structures in the scene. However,
learning-based representations of the input were shown to
outperform hand-crafted representations and policies.

Vora et al. [18] present the work on PointPainting which
obtains class scores using an image-only semantic segmen-
tation network, and then augments the pointcloud with the
score vector. They show that LIDAR-only segmentation
networks can then be applied to the augmented pointcloud
for improved accuracy in 3D segmentation. Although, such
an approach accurately segments the pointcloud, the overall
computational cost grows significantly as it requires two dif-
ferent segmentation networks to be used, and the augmented
pointcloud requires even higher memory usage.

Learning-based methods for extracting 3D objects such as
pedestrians, cars, cyclists, etc. from point clouds and images
have been shown to perform well on the KITTI dataset
(PointRCNN [15], PointNet [13], VoxelNet [21], MV3D [3],
AVOD [9], PIXOR [19], Complex YOLO [16]). Point pillars
were proposed by Lang et al. [10] as an efficient organization
of point cloud for end-to-end extraction of oriented bounding
boxes for objects. SemanticVoxels [5] further generalized the
approach taken by PointPillars for fusing semantic colored
image features and geometric LIDAR features to achieve
superior 3D object detection results on the KITTI dataset.
Madawi et al. [4] also explore 3D semantic segmentation
by fusing both LIDAR scans and color images into a Polar
Grid Map (PGM) tensors. They implement custom network
architectures for fusion of color and depth both before and
after the feature extraction stages of the architecture, using
SqueezeSeg and PointSeg as the baseline models. They
achieve higher accuracy than the baseline models only with
slightly higher computational costs. Although such learning-
based segmentation and detection networks perform well, all
single-frame techniques are prone to exhibit false detections
which can lead high-level planners to make incorrect deci-
sions. Therefore, we combine this part of the literature with
that on Multi-Object Tracking (MOT) [14, 1] to discard false
detections and smooth out the trajectories of various semantic
objects over both space and time.



2) Person-Following on Legged and Humanoid Robots:
Following humans safely and robustly is an important task
in the field of Human-Robot Interaction (HRI) and is vital in
disaster relief and search-and-rescue applications. However,
most human-following frameworks have been either devel-
oped for structured indoor environments or wheeled robots
with limited traversability.

Goldhoorn et al. [6] present experimental results on a
wheeled-humanoid robot following a human target in an ur-
ban setting. They employ two novel methods using Partially
Observable Monte-Carlo Planning (POMCP), with their best-
performing method being a compound algorithm that uses
heuristic path planning when humans are detected, and
Monte Carlo simulations otherwise. Their robot was able
to follow a human for over 3 kilometers over the span of
3 hours, even when the human was not visible. However,
since such methods rely on a finite number of discrete
actions and observations, they are usuallly unsuitable for
high-dimensional systems such as legged humanoid robots
in complex environments.

Zhang et al. [20] present the first person-following frame-
work for quadrupedal locomotion. Their robot uses a LIDAR,
a depth camera, an IMU, and odometry to build a local
traversability-based cost map and find the pose of the tracked
human. This data is fed into their motion planner for the
generation of an initial coarse path, which is then optimized
to minimize time and acceleration under simplified kinody-
namic constraints. They evaluate their algorithm in indoor
and outdoor environments using a JueYing quadrupedal robot
running their module at 10 Hz.

III. SENSOR CONFIGURATION

The front of the sensor head contains three different
cameras as shown in both Fig.I and Fig.2. The depth camera
in the middle (Intel D435) offers a resolution of 640×480
on both color and depth images, and looks straight forward.
Additionally, two monocular 1280×720 cameras (Logitech
Brio) face sideways at yaws of +40 and -40 degrees from
forward. The image streams from all the monocular color
cameras are stitched together for being used by the human
robot operator for selecting a target to follow and generally
interacting with the perception engine.

The sensor head is equipped with a 360-degree LIDAR
(Ouster OS0-128) consisting of 128 vertical channels and
2048 scan points per channel. This LIDAR is capable of
generating scans of the environment at 10 Hz with a maxi-
mum range of 120 metres. The LIDAR is primarily used to
track semantically meaningful objects in 3D, and improving
the redundancy of the object detection and tracking system.
Other sensor types and approaches for depth extraction could
also have been used, however, we found the Ouster to be
a reasonable solution for acquiring accurate and long-range
depth over a wide FOV.

The sensor head also contains a passive stereo pair (ZED-
2) facing down with a pitch of 20 degrees, used for gener-
ating passive depth maps. The robot also uses active depth
from an Intel RealSense L515 sensor attached to the chest

looking down on the terrain to extract planar regions as
simplified representation of the terrain in front of the legged
robot. We use the GPU algorithm presented by Mishra et
al. [11] to segment the depth into multiple approximately-
convex planar regions. Passive stereo depth is used as a
redundancy for this task of planar region extraction as
the height and surface normal are further constrained for
improved footstep planning.

A dedicated on-board computer was also added to the
sensor head for both interfacing with the sensors, as well
as performing perception algorithms on the incoming data.
The on-board computer ultimately connects to a 10 Gbps
Ethernet switch on the robot for high-bandwidth transfer of
processed data to all parts of the systems. Specifications of
the on-board computer were chosen to be Intel Core i7 8th
Gen, GTX 1050 Ti, and 32 GB of memory.

Fig. 3: Fused Semantic Segmentation and Instance Clustering for
Multiple Human Class Objects in the Scene.

1) Calibration and Internal Parameters: Once the hard-
ware for the sensor head was assembled and the on-board
computer setup with necessary sensor drivers, calibration
routines were performed to extract the following parameters
for all 5 cameras on the head (illustrated in Fig.2): the
4× 4 camera intrinsic parameter matrix Msensor, the 3× 3
homography matrix Hsensor from the sensor image plane ΩC
to the base image plane ΩB, and the 4× 4 homogeneous
rigid-body transform Tsensor from camera frame RC to the
base frame RB. Camera intrinsic and extrinsic parameters
were calculated using Zhang’s method [2], and used to
generate the pinhole model for projecting LIDAR 3D points
onto all the cameras as,u
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where fx, fy, cx, and cy are focal lengths and centers of
projection along x and y axes.

2) Warping and Image Fusion: We then calculate the
homographies Hsensor between various cameras and base



image plane (D435), using ORB feature correspondences
(ZED 2 and Logitech Brio cams) and warp the non-base
images onto the base image plane using,xλ
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and obtain the final stitched image β (x,y) to be used for
robot operator interfacing.

IV. APPROACH

The overall approach taken by the perception engine is
to detect and track semantic entities in the environment
and use them for informing high-level robot behaviors,
such as building exploration, person following, manipulation,
or other forms of physical interaction. The pipeline first
attempts to detect all semantically meaningful objects and
structures in the environment using a semantic segmentation
model on the combined image stream from the multi-camera
system available on the sensor head. The generated semantic
mask with class labeled pixels is then used to segment the
LIDAR pointcloud using the semantic class masks. The point
cloud is then split into blobs belonging to different classes,
which are then further separated into smaller pointclouds
representing the various instances of each semantic class. The
instance-separated pointclouds are further used for tracking
object instances over time and providing goal locations to
high-level behaviors such as the person-following behavior.

A. Semantic Segmentation of Images

Semantic segmentation is used to generate class-wise
masks for classifying and segmenting various objects ob-
served in the color image streams as shown in Fig.3. Par-
ticularly, we employ a RefineNet model with a ResNet-
101 backbone [17] which enables us to achieve real-time
semantic image segmentation. The RefineNet model was
trained first on the combined COCO+BSD+VOC datasets,
and then trained further on the ADE20K dataset for 90
epochs with learning rate decrements after every 30 epochs.
A subset of ADE20k containing indoor classes was selected
and augmented with operations such as randomized mirror-
ing, cropping, downsampling, and upsampling along with
padding.

The training dataset consisted of 20,210 training images,
2,000 validation images, and 3,000 testing images. More
information about the classes that were included in training is
available in Table II. The percentage of instances and pixels
are both values obtained from the ground-truth masks in the
training and validation data sets, and the IOU scores were
obtained as the highest mean IOU score across all classes.

B. Terrain Mapping

Legged robots specifically need fast and reliable system
for terrain surface extraction to be able to generate feasible
footstep plans for locomotion. In this regard, we use an active
depth sensor to extract representations of terrain surface
in form of polygonal planar regions. The look-and-step

TABLE I: Information regarding the training dataset used along
with evaluation metrics

ID Name Frequency [%] Pixels [%] IOU
0 Void 66.09 32.75 0.577
1 Wall 6.81 29.70 0.669
2 Floor 5.44 11.21 0.715
3 Ceiling 3.84 7.63 0.692
4 Window 2.73 3.48 0.451
5 Cabinet 1.68 3.92 0.452
6 Person 2.97 2.28 0.676
7 Door 3.96 1.91 0.224
8 Table 2.48 2.32 0.348
9 Curtain 1.25 2.16 0.596

10 Chair 1.90 2.14 0.417
11 Stairs 0.52 0.23 0.234
12 Staircase 0.33 0.16 0.092

behavior on the robot is responsible for planning a sequence
of feasible footholds for the robot to step on using the most
recent set of planar regions. We use our GPU-accelerated
algorithm for planar region extraction, which segments the
depth map into planar regions by dividing the depth into
patches of pixels and then grouping nearby patches with
similar surface normals together into polygonal regions [11].

C. Point-Cloud Classification and Instance Clustering

For object instance extraction, the point cloud X is broken
down into disjoint semantic subsets xc for the different
semantic classes c ∈ (human,chair, table,doors,couch, ...).
We label 3D points Xi by projecting them onto the image
plane of a colored camera which overlaps in FOV with the
LIDAR, and obtain the semantic class from the segmentation
mask for the projected 2D coordinates (ui,vi). All points
belonging to a particular semantic class are then collected
into a single cluster xc. The cluster is then further divided
up into separate clouds for each specific instance of the class.
The instance-specific cloud ixc or instance cloud is then used
as the final representation of objects in the environment.
The centroids of these instance clouds are then fed into the
Multiple Object Tracker (MOT) running on a separate thread.
The specific MOT track selected by the robot operator is then
used as the final target trajectory for the person-following
behavior. Due to noise and inaccuracies at various points in
the process of instance-wise clustering, the instance cloud
does not always contain points evenly distributed throughout
the object. This necessitates the need for tracking position
of object instances over time.

D. Tracking Dynamic Object Types

Robust and reliable awareness of objects in the surround-
ings requires tracking object instances through time and
space. The pipeline up to this point simply generates three-
dimensional detections of object instances at every camera
frame. Since every sensor frame of data is independent of the
previous frame, a mechanism to maintain state or memory
of various instances becomes necessary.

The MOT framework first calculates Histrogram of Ori-
ented Gradients (HOG) representation of the most recent
detections and caches them. The HOG feature vectors for



Fig. 4: The process of Multiple-Object Tracking (MOT) in which
new detections are fused with their corresponding tracks after
matching. In this process, an affinity metric is calculated between
all detections and tracks, and used to decide if a detection can be
matched to an existing track. Unmatched tracks are discarded after
N frames if they cannot be matched to existing tracks.

the latest detections are then matched with those of existing
tracks as shown in Fig. 4 by calculating the Hellinger
distance as the affinity between them as,

d(H1,H2) =

√
1− 1

H̄1 ∗ H̄2 ∗N2 ∗∑
J

√
H1(J)∗H2(J) (3)

where,
H̄k =

1
N
∗∑

I
Hk(I) (4)

and N is the total number of bins in the histogram [12]. The
framework further employs thresholds the Intersection-over-
Union (IoU) of the semantic masks of consecutive detections
of objects to ensure that tracks are correctly matched to
detections.

For every track, an instance of a Kalman Filter is used
to smooth the trajectory of any particular object instance
over time. For high-level behaviors such as following an
object, the object instance can be represented as simply a
point moving through space in 3D.

Often, due to imperfections in identifying corresponding
instances over multiple frames, the pipeline ends up losing
track of previously seen objects or regaining track of lost
objects. We discard unmatched tracks only after no new
detections were matched with them for longer than U = 20
frames. However, unmatched detections give rise to newly
spawned tracks and are included in the list of all tracks. This
list of tracks can then be used by human operator to choose
which object to follow by clicking on the stitched-image
semantic mask displayed on the user-interface. As long as
target objects remain at least 0.5 m away from each other, the
engine is able to distinguish the different instances apart. As
a result detetections were seldom observed to be incorrectly
matched to tracks in practice.

E. Humanoid Robot Behaviors

For evaluating the semantic-metric perception engine, we
chose a person-following behavior that was tasked with

dynamically tracking and following a moving person over
rough terrain. De-coupling the task of locomotion from that
of target-following, we divided the overall task into two
simpler behaviors named look-and-step and track-and-follow.

1) Look-and-Step Behavior: The look-and-step was de-
signed as a low-level behavior that was responsible only
for using the most recent local map of the terrain to plan
a sequence of footsteps and walk to a pre-defined goal pose.
The behavior depended on the GPU-based planar region
extraction algorithm [11] and our A*-based footstep planner
[7] to walk to the goal pose, one step at a time. The design
for this behavior enabled the robot to autonomously walk
both forward and backward, depending on where the goal
pose was defined. Locomotion on rough-terrain could also
be achieved within the same behavior design as the A*-
based footstep planner was able to accommodate for footstep
position, altitude, yaw, as well as partial footholds.

2) Track-and-Follow Behavior: This behavior was re-
sponsible for obtaining the target position position from the
perception engine and defining the goal pose input for the
look-and-step behavior. The architecture of the track-and-
follow behavior was designed to be high-level and abstracted
out the robot-specific tasks such as planning, control and
perception. The look-and-step was used by the track-and-
follow behavior as a low-level utility function. Although the
perception engine is capable of acquiring target positions
at 10 Hz, the track-and-follow was intentionally restricted
from outputting a goal pose to the look-and-step behavior at
up to 2 Hz for allowing the footstep planner and controller
time to achieve the previous goal state. The planar goal pose
(x,y,z,yaw) was calculated as the pose 2m away from the
target along the line from target to robot, facing the target.
The distance of 2m was mainly chosen as a balance between
human safety and lab dimensions.

V. EXPERIMENTS AND RESULTS

We conducted several experiments with Atlas perform-
ing the track-and-follow and look-and-step behaviors while
following human target around the lab, as shown in Fig.5.
In all experiments, both the human target and Atlas were
tagged with a motion-capture marker rigid-body on the right
shoulder. In the first two trials, the terrain was made simply
to be flat-ground. However, in the third trial an unstructured
field of cinder blocks was placed between the human target
and Atlas.

Fig. 5: Human target and Atlas while performing Track-and-Follow
Behavior on flat-ground (top-row) and rough terrain (bottom-row).



Fig. 6: Motion Capture trajectories for the human target and Atlas while performing Track-and-Follow Behavior.

A. Following Target on Flat-Ground

The first experiment was for Atlas to follow a single
person on flat-ground. A single person was tasked with
moving in a figure-eight loop trajectory with a circular loop
diameter of about 4 meters. Although, the perception pipeline
could generate and track human targets at 30 Hz, the track-
and-follow behavior was designed to only accept new goal
states at 2 Hz. A safe distance of 2 m was used as an offset
between the person and the robot. The trajectories in Fig.
6 show that Atlas performed better at maintaining the offset
along the X-axis of the motion-capture reference frame, than
on the Z-axis. This was mainly due to the fact that our
robotics lab is significantly longer along X-axis, but limited
in width along Z-axis.

B. Following Target on Rough Terrain

For evaluating the robustness of the behavior, Atlas was
challenged with following the target on rough terrain. Since
the track-and-follow behavior was designed such that the
tasks of walking and following are decoupled, the rough
terrain was traversed with very slightly worse accuracy in
person-following, shown on the last column in Fig. 6. We
calculated the Absolute Displacement Error (ADE) along X
and Z axes for all the trials, given in II, as,

ADEx =
1
N

N

∑
t=0
|Xatlas(t)−Xtarget(t)|. (5)

The ADE value of around 2 m along X-axis was consistent
with both the safety distance offset 2 m, as desired, and the

TABLE II: The Absolute Displacement Error (ADE) along X and
Y axes.

Trial X-axis ADE (m) Y-axis ADE (m)

1 2.194 0.104
2 2.128 0.290
3 2.025 0.621

fact that the line joining the target and robot was along the
X-axis for majority of the time due to the lab dimensions.

VI. CONCLUSION

Throughout our experiments, we were keen on gathering
observations regarding some of the limitations and possible
extensions to our work. Although our perception engine
is capable of dynamically tracking semantically meaningful
objects over time and space, it does not maintain a complete
map of the world. A probabilistic graph-based mapping back-
end could be used to use the semantic landmarks for Simulta-
neous Localization and Mapping (SLAM) using higher-level
semantic features, rather than low-level geometric features.
Furthermore, such a semantic-metric understanding of the
world could be extended to guide active planning algorithms
for enabling robots for making semantically optimal deci-
sions. We would also like to explore passive stereo further.
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