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Abstract 
 
This document surveys several structures that time can  be taken to have, discusses the 
different intuitions which justify them, and gives organised collections of axioms to 
describe them.  
 
Introduction 
 
Many ontologies or axiomatic or formal descriptions  somehow involve or assume a 
formalisation of time.  The actual structure of time itself is often taken for granted when 
constructing these formalisations. For example, most temporal database work simply 
assumes that time is a discrete series of countable clock-ticks; some discussions assume 
that the timeline is the real line R, while other authors use axioms which seem to be in 
conflict with Dedekind continuity. There does not seem to be a single account ot the 
structure of time which is accepted by everyone. Hardly any claim about temporal models 
is uncontroversial. Some philosophers have even wondered if times are partially ordered. 
This 'catalog' tries to give a coherent overview of several of these ideas and synthesise 
them as far as possible. 
 
This is probably not a complete survey2, and  many temporal issues are deliberately 
excluded. The aim here is only to look at ways of describing the actual structure of time, 
but not ways in which language and beliefs are related to it (which would require a much 
larger document. ) Mixing epistemic and temporal languages raises several difficult 
problems in reasoning about what will happen when new knowledge becomes available, for 
example. Much research has been devoted to reasoning about how facts persist through 
time; the famous frame problem arises squarely in this area. As time passes, objects are 
created and destroyed, and people gain, and forget, information. Reasoning involving 
quantifiers and descriptions of states of knowledge therefore needs to be sensitive to the 
changes that time can produce. There is nothing intrinsically temporal about these issues, 
in fact – exactly similar kinds of complexity can be produced with spatial variations – but 
they seem to be particularly acute in a temporal setting, probably because people are so 
familar with the need to reinterpret past assertions with the wisdom of hindsight. But in 
any case, these issues are beyond the scope of this document, which is only concerned 
with the actual structure of the ‘time-line’3. 
 

                                            
1This work was performed during 1994-95 at the Beckman Institute and Department of 

Philosophy, University of Illinois with support by the University of Southern California on grant  
NASA NAG2-864. It was originally issued as University of Illinois Technical Report UIUC-BI-AI-96-01 
2 Suggestions for material which should be covered in later editions are welcomed. 
3Although it need not be a line. 
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Some of the concepts in this document are new,  including the 'vector continuum' 
described in section 5 and the formalization of clocks and calendars in section 6, but 
many are taken from previously published work, especially (Van Benthem 1984) , (Freska 
1992) and papers by James Allen and myself.  Van Benthem’s book is an especially 
insightful and thorough survey.  Particular citations are given in the text. The axioms in 
this particular form, and the overall organisation, are new. 
 
 

1. What “time” means 
 
The English word “time”has at least six different senses. The first, perhaps most 
fundamental, refers to one of the basic physical dimensions, on a par with length, mass 
and voltage.  We will have little to say about this other than to note its status as a 
physical dimension, called the time-dimension. Time-dimension is a physical-dimension in 
the sense of Gruber & Olsen (1994). 
 
The next idea is that of the universe of time, or temporal continuum; a large temporal 
“space”1 within which all events are located, perhaps one dimension of the whole history 
of the universe. We will call this the time-plenum.  It is often called the time-line, but it 
need not always be regarded as linear. For example, relativistic time has a partial ordering 
abstracted from space-time, and planners often treat the time-plenum as branching into 
the future.   Sometimes the plenum is thought of as a sequence of ‘worlds’, each of 
which is therefore considered to be timeless; in modal semantics these are often called 
temporally possible worlds. 
 
The third concept is of pieces of time; physical entities whose sole dimension is time-
dimension. These are variously called time-periods or time-intervals, or simply intervals2.  
Examples include during the 1994 winter Olympics, the sixteenth century and 10:50 to 
11.00 a.m. on 30 May 1993. These are particular pieces of time located in (or perhaps, 
parts of) the time-plenum. Intervals are in many ways the most central concept for 
temporal reasoning since they are the temporal extents of things. Events typically are 
thought of as occupying them, propositions are true during them, and they are the 
lifetimes of objects.  We restrict attention to the simplest and most widely used notion of 
a contiguous interval (containing all its subintervals, having no gaps) but the idea of an 
intermittent interval, such as every Wednesday afternoon during August 1973, is often 
useful. 
 
A fourth notion is that of a timepoint.  Exactly what counts as a point, and the 
relationships between points and intervals, seem to be particularly controversial and 
sensitive questions, and many of the formalisations in use in computer science have taken 
one or another stance on the answers to these questions. (In particular: whether or not a 
point can be thought of as an infinitesimal interval; whether or not intervals are sets of 
points; and whether or not propositions can be true at single points.) We will pay detailed 
attention to these issues later.  
 
A fifth notion is that of an amount of time. Such things as a century,  25 minutes and as 
long as it takes for the kettle to boil,  are amounts of time, which I will call durations.  It is 
                                            
1 The pun is unavoidable. Sorry. 
2Although a timeinterval need not be an interval in the sense of real analysis, so some care is 
needed in terminology.  
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natural (although not necessary) to assume that every interval has a duration, but the 
concepts are distinct. The relationship between an interval and a duration is like that 
between a particular piece of real estate - say, the site of Sherwood Forest - and its area 
- say, 45.63 square miles. English is often ambiguous between these meanings.  For 
example ‘century’ might refer to a duration of 100 years, or to a particular interval such 
as the 19th century. A duration is a  constant-quantity of time in the sense of Gruber & 
Olsen (1994). In their ontology, constant quantities of time are amounts that can be 
compared, added, and scaled; dividing a time quantity by a standard reference time 
quantity (a unit of measure) produces a real number. In our development here, more 
oriented towards clock-ticking, we use integers. 
 
The last notion of ‘time’ is of a position in a temporal coordinate system. Examples 
include dates such as 14 March 1994, day-times such as 3.45 pm, or such things as 
stopwatch lap timings in a race. These are usually the appropriate answer to a query 
concerning when something happened.  Temporal positions are often thought of as 
points. If a temporal position has no duration, in contrast to an interval, this seems 
appropriate. (It does not seem to make sense to ask how long 3.45 pm lasts, for 
example.) On the other hand, it is quite consistent to have positions in a calendar which 
are themselves intervals, with a finer coordinate system defining ‘inner’ positions of hours 
and minutes, and one might claim that such refinement of the temporal coordinates can 
always be achieved. So timepositions might be modelled in either way. 
 
Although axioms do not always make these distinctions, this basic categorisation and the 
terminology of time(dimension), (time)plenum, (time)interval, (time)duration, (time)point 
and (time)position  will be used throughout this document.   
 
These ideas are clearly related to one another, but the exact relationships can be defined 
in a variety of ways.  A temporal theory may take points as basic and define intervals as a 
pair of endpoints, or allow only intervals and find the notion of ‘point’ incoherent. Some 
theories identify an interval with the set of points it contains, while others are 
incompatible with this interpretation.  A duration can be defined in terms of a 'standard' 
interval – such as a clock tick or a day – or it can be given an independent mathematical 
description.  A point can be regarded as an infinitesimal interval, or as an 'atomic' interval, 
or as a 'quiescent' interval during which no change takes place; or an theory may strictly 
separate the two categories of interval and point.  
 
Two relationships in particular deserve longer discussion. 
 
1.1   Subinterval inheritance 
 
In some theories, asserting that a proposition is true in an interval entails that it is true at 
all points, or in all subintervals, of the interval. Other theories explicitly deny the necessity 
of this subinterval inheritance, allowing something to be true during an interval without 
being true in all subintervals.  This difference seems to reflect a fundamental split 
between two rival intuitions, which can be illustrated by considering a bend in a road.  
 
On a four-day drive from the east to the west coast, a bend in the winding road can mean 
that one is driving in an easterly direction for ten minutes, say; and yet it seems still true, 
in some sense, to say that one is driving westward.  
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One way to describe this says that 'driving west' is true in the four-day interval I, but 
false in the ten-minute subinterval J. Examples like this, then, seem to show that a 
proposition can be true in an interval without being true in all its subintervals. If asked, 
“Are you driving west now?”, the appropriate answer, on this view, would be to inquire 
what sense of “now” was intended, since driving west is false if “now” is taken to be a 
short surrounding interval, but true if it is taken to refer to the longer interval which 
contains the whole journey.  
 
This view fits with the idea that propositions are true only during intervals: the interval is 
necessary to establish the appropriate context. It hardly makes sense, on this view, to 
ask for the truthvalue of a proposition at an isolated timepoint. 
 
Another way to describe the bent road, however, distinguishes two senses of driving 
west. One means bound towards a western destination, the other means driving with 
one's vehicle aimed at the western point of the compass. The correct way to describe the 
anomalous situation, according to this view, is that driving west-1 is true throughout I 
(including during J), but driving west-2 is false throughout J. If asked, during J, whether 
one were driving west, the appropriate reply would be to ask which sense of “driving 
west” was meant, because one is true and the other is false. This view regards a claim of 
truth during an interval as always implying truth during all subintervals, and insists that 
apparent counterexamples always involve an ambiguity of meaning.   
 
The second intuition fits very naturally with the view of an interval as a set of points. 
Given this set-theoretic vision of an interval, it is not easy to see what it could mean for 
something to be true throughout the interval without it being true at every point in the 
interval, and hence through every subinterval. 
 
For example, Allen (1984) argues that someone can be writing a novel during a period of, 
say, a year, without this meaning that they never eat or sleep; hence the process of 
writing a novel is not inherited by subintervals. Galton (1990) however responds by 
distinguishing two senses of “writing a novel” (one means having that as one's current 
professional goal, the other means actually hitting the keyboard) and claims that both of 
these are inherited by subintervals.  
 
While the second position often seems philosophically convincing, its practical effect can 
be to create many predicates with subtle nuances of meaning solely for the purpose of 
maintaining temporal consistency.  Fortunately the second view can be modelled in the 
first one in a way that avoids this conceptual promiscuity.  If one accepts the first view, 
in which truth is always relative to an interval, the second view can be modeled by 
claiming that the two different senses of the proposition which the second view requires, 
are just the proposition relativised to different intervals. On this view, we can allow that 
P-in-interval-I  is true in all subintervals of I, ie that a proposition relativized to an interval 
is inherited in all its subintervals. One way to express this distinguishes truth on an 
interval from truth in an interval. The idea here is that a proposition being true on an 
interval identifies that interval as an appropriate reference interval for the proposition. 
Truth in an interval means that there is a containing interval on which the proposition is 
true. Subinterval inheritance of truth in an interval then follows simply from the 
transitivity of the subinterval relation.  Truth in an interval need not entail truth on that 
interval; which is exactly the case when the road has a bend in it.  
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It is quite consistent to accept both positions, and allow some propositions to be 
inherited by subintervals and some not. That a car motor is running, for example, seems 
to be a plausible candidate for subinterval inheritance. This can be described by saying 
that for such predicates, every subinterval of a reference interval is itself a reference 
interval.  
 
 
1.2 .  Intervals and points 
 
Intervals can be thought of as related to points in several different ways.  
 
The first view is that points are intervals, but intervals which are as short as possible: 
single clock-ticks, as it were. If time is thought of as being discrete this is quite coherent, 
and it means that there is no real need for the concept of timepoint, since all times are 
intervals.  However, since other theories maintain the distinction, I will use the term 
moment to refer to such a basic interval.  A moment is an interval with no subintervals, or 
an interval with no separable timepoints inside it. Moments cannot overlap or be 
contained in one another. They have no internal structure; they arepoint-like intervals.  
Another way of describing this is that a moment is an interval during which nothing can 
happen; a quiescent interval. This can be misleading, however, as any beginning student 
of calculus will testify, since something can be happening at a point  – something might 
be moving, for example – even though it is too small to be when a complete event takes 
place.   
 
Some theories identify  timepoints as being the  moments; others interpret them as  lying 
between the moments, since moments are intervals andpoints are places where intervals 
meet. These interpretations seem incompatible, but they can be made consistent if one 
proceeds carefully, as we show in section 5. 
 
Some views insist that time is continuous, so that there can be no moment-intervals.  
Several different ideas are still possible, however. The intuitions behind these alternatives 
can be illustrated by the following ancient puzzle about the continuum. Consider dividing 
an interval into two equal halves. The division must happen at a point; but which half 
contains that point of division? Whichever half contains it must be not exactly equal to 
the other: but by hypothesis the halves are equal. Exactly the same intuitive problem 
arises when we consider intervals which meet, without there seeming to be any reason to 
put the meeting-point in either one.(Allen 1984) 
 
This puzzle does not have the logical status of Russell's paradox, but it is of interest here 
because it serves to identify two rival intuitions about the continuum. According to one, 
now standard in mathematics, points are first-class objects and an interval is identified 
with the set of points that it contains. According to the other, points serve to locate 
positions within or between intervals, which are first-class objects with extents  which can 
be compared. If we stick to either intuition carefully the puzzle vanishes. On the first, the 
conclusion is simply that it is impossible to divide an interval exactly symmetrically in half, 
and we are led to distinguish open and closed intervals. The second intuition insists that 
such equal splitting must be possible, and even happen at a point, but rejects the 
conclusion that this point must be contained in either half. If one thinks of an interval as 
like a piece of glass filament, something which can be snapped neatly in two, then to ask 
which half 'contains' the point of division would seem perverse, since points are not 
themselves to be thought of as parts of the physical continuum.  
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Contemporary mathematical theory has firmly adopted the first idea, which we will call 
the point continuum. However, the second is also a coherent position, which we will call 
the glass continuum. In the glass continuum, intervals are not definable as sets of points, 
but are things in their own right, intervals sui generis. Several of the temporal theories 
given later describe the glass continuum. We demonstrate that the idea is coherent by 
describing models for those theories. In the point continuum intervals are either open or 
closed. In the glass continuum, endpoints are not contained in either interval, and there is 
no open/closed distinction. In the point continuum it is possible to have a closed interval 
consisting of a single point (which is also both the endpoints of that interval), but this is 
impossible in the glass continuum (although it is possible in the vector continuum: see 
section 5) 
 
There are examples  which argue for the intuitive plausibility of both ideas. Consider a 
light going out.  The intervals of its being on and then off seem to meet one another, and 
intuition suggests that the question of whether the light is on or not at the point of 
extinguishing is meaningless. On the other hand, consider a ball tossed into the air. 
Qualitative reasoning suggests that the intervals of the ball's upward velocity being 
positive and negative also meet at a point, but here the meeting-point seems clearly 
distinguished by a predicate – that the ball is motionless – which is true there and 
nowhere else. This is impossible in the glass continuum, but very natural in the point 
continuum. Later we will consider theories  which allow both kinds of meeting. 
 
It is sometimes claimed that any physical truth must hold during an interval, although 
perhaps a very short one, and that points are mere mathematical abstractions. What is 
coventionally called a timepoint must therefore be understood to really be a very short 
interval, shorter than the current 'grain size' of the theory.  While this idea is physically 
plausible, I do not think the mathematical consequences have been fully explored. This is 
compatible with the glass continuum, where it is used to explain the tossed-ball example 
by insisting that the ball is motionless for a very short period. However, it is also 
compatible with the point continuum, where it can be used to argue that changes of 
truthvalue are never instantaneous, so such intervals do not exactly meet but are 
separated by short linking moments during which the transition happens. In the point 
continuum these intervals can be single points, so that the intervals of the lights being on 
and being off would meet at a point at which the light was neither on nor off, but was 
going out. 
 
Finally, a quite different idea of the relationship between points and intervals is based on 
the idea of information. On this view an interval is an expression of doubt about the exact 
position of a point. Decreasing the size of an interval increases the amount of information 
about the location of the point, i.e. the degree of precision. This 'information' view of 
intervals is often seen as incompatible with the first idea of identifying an interval by its 
endpoints, because this would assume infinite precision. It leads to axioms which focus on 
different relationships. For example, several of Allen's thirteen relations now become 
meaningless, since it is impossible to distinguish meeting from overlapping. 
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2.  Styles of temporal language 
 
So far we have discussed only the nature of time itself. But the language used to describe 
time can also vary. Formalisms have been adapted in various ways to refer to temporal 
relationships, to propositions whose truth may vary with time, and things whose 
properties may change with time. In this section we will briefly survey the main options: a 
full survey would require a book-length document. 
 
Time can be involved with knowledge representations in at least three distinct ways. First, 
we might represent knowledge of time in the same way we might represent knowledge of 
anything else, simply by writing descriptions of time.  Second, the expressions of the 
knowledge itself might be thought of as being temporally relativised in some way, so that 
for example the language might involve tenses, or the assertions be time-indexed in some 
way. And third, the inference machinery which manipulates the knowledge might itself be 
thought of as embedded in time, so that there is a notion of ‘now’ and issues of  
temporal truth maintenance become relevant.  
 
2.1 Timeless quantification 
 
The most direct way to describe time simply treats times as objects and describes them 
by axioms which relate times to other things. For example, one common way to 
acknowledge the temporal sensitivity of some relations (and functions) is simply by 
allowing times as an extra argument, often with some convention such that it must be 
the last argument. To say that Joe and Anne were married during 1993 one might then 
simply write 
 
 (married Joe Anne 1993) 
 
Alternative styles include thinking of the world as consisting of things that have duration, 
so that one might write 
 
 (contains (time-of (marriage Joe Anne)) 1993) 
 
where time-of is a function from things to the timeperiods they occupy. 
 
Rather different axioms result if one thinks of these times as points or as intervals; but 
they share the property that the language itself is not temporally embedded, so that all 
quantifiers are timeless.  Any temporal restrictions on quantification must be made 
explicit. It is therefore usually necessary to have some way of asserting that something 
exists at a time. This can be done by a relation existswhen  between things and times, for 
example. 
 
A familiar use of the temporal-argument technique is seen in the  'situation calculus', 
which describes actions in this way: 
 
                  (forall (?t ?action)(=> (and (<action-conditions> ?action) 
                                   (<antecedent-conditions> ?t)   ) 
                              (<consequent-conditions> (do ?action ?t))  
      )) 
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where do is taken to be a function from a time and an action, to the time at the end of 
the action. Here the time-ordering is defined simply by the syntactic nesting of 'do' 
terms, so that  t  is always earlier than (do a t).  Since this is a partial order, the time-
plenum is considered to be branching, with alternative futures corresponding to 
alternative courses of action. 
 
 The situation calculus assumes that the universe is stable unless actions happen to alter 
it. Thus, although a situation seems to be an interval, since nothing happens during these 
intervals they are point-like in the sense just described. Notice this is not here meant to 
imply that they are of short duration, only that they have no internal temporal structure  
which can be described in the language. The only temporal structure in the plenum 
assumed by the situation calculus is a partial ordering of such intervals; they cannot 
overlap or be contained in one another. 
 
Variations on this style of axiomatic description have been much used in planning, and 
have become almost a standard in parts of AI. It has obvious connections with state-
space descriptions of computation. For our purposes it is sufficient to note that while this 
style of description treats times as point-like and does not utilise the more complex 
interval relationships, the use of temporal arguments does not necessarily restrict one to 
this limitation.  
 
2.2  Holding true 
 
The second style asserts that sentences ‘hold true’ at times, so that one would write 
something like the following.  
 
 (holds (married Joe Anne) 1993) 
 
(The use of a different font for this holds is deliberate, as holds already has a distinct 
meaning in KIF.  The above expression is not legal KIF! )  Notice that the “inner sentence” 
is timeless. The symbols holds and married cannot here both be understood to denote 
conventional extensional relations, for then the first argument to holds would be a 
truthvalue.  If the “inner” sentences are indeed sentences, then holds is essentially a 
modal operator. An alternative view  is to regard all the inner expressions as terms 
denoting propositions, so that relation symbols such as “married” become functions from 
individuals to propositions. This has the awkward consequence of needing almost the 
entire syntax of first-order logic to be mirrored in an “inner” language of terms. 
 
It is not exactly clear what holds means, however.  If times are regarded as points (or  
quiescent intervals) and if the ‘inner’ language does not have quantifiers, then this can be 
straightforwardly translated back into plain logical syntax by applying the following 
recursive rules: 
 
 (holds  (and φ,ψ)  ?t)  --->   (and (holds  φ ?t) (holds  ψ ?t)) 
 (holds  (or φ,ψ)  ?t)   --->   (or (holds  φ ?t) (holds  ψ ?t)) 
 (holds  (not φ)  ?t)    --->   (not (holds  φ ?t)) 
 (holds  (R a1 ... an) ?t)  --->  (R a1 ... an ?t) 
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(Sometimes it may be appropriate to just forget the last rule. It depends on whether or 
not the relation is thought to be temporally sensitive. For example, the natural translation 
of  
 
 (holds  (=> (and (man ?x)(married ?x Julia))(happy ?x)) T) 
 
would be  
 
 (=> (and (man ?x)(married ?x Julia T))(happy ?x T)) 
 
since men may change their states of marriage and happiness, but rarely their sex.) 
 
However, if the times are understood to be nonpointlike intervals, and holds  means 
holding true throughout the interval, then negation and disjunction need to be treated 
more carefully. If it is possible for both φ and (not φ) to be true during parts of the 
interval, then   
 (not (holds  φ ?t))  
is a weaker claim than  
 (holds  (not φ) ?t) 
and the third rule is inadequate (although not incorrect).   
 
Following Allen, we might replace the negation rule with 
 
(holds  (not φ)  ?t)  --->   
    (forall (?s)(=>(in ?s ?t)(not (holds  φ ?s)))) 
 
where  in is the relation between an interval and a containing interval.   This only makes 
sense, of course, if appropriate axioms are provided for in. If  in is taken to be 
irreflexive then this assumes that  ?t  always has a proper subinterval, and this is not true 
in discrete time where ?t  might  be a single clock-tick. The reflexive interpretation 
(where every interval is  in itself)  therefore seems more natural here; or we could 
assume that time is dense. 
 
 The disjunction rule cannot be similarly replaced with 
 
** (holds  (or φ,ψ)  ?t) --->   
    (forall (?s) 
    (=>(in ?s ?t)(or (holds  φ ?s)(holds  ψ ?s)))) 
 
To see why, consider an oscillator and let  φ and ψ  be respectively the propositions that 
it is in its two states. Then (or φ ψ) is always true, but there may be many subintervals 
during which the oscillator is not constantly in one state or the other, especially if we turn 
up the frequency. DeMorgan's laws provide the following translation for disjunction, which 
is regrettably complicated: 
 
(holds  (or φ,ψ)  ?t) --->  (forall (?s)(=>(in ?s ?t) 
     (exists (?u)(and(in ?u ?s) 
      (or (holds  φ ?u)(holds  ψ ?u)))))) 
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Quantification is also a little more complicated. If we allow quantified sentences to hold 
at a time, allowing expressions like  
 
 (forall (?x)(=> (holds  (exists (?y ?z) 
     (and (not (= ?y ?z)) 
      (married ?x ?y)  
      (married ?x ?z))) 
    ?t)  
   (exists (?t1) (and (later ?t ?t1)  
    (holds  (troubled ?x) ?t1))) 
 )) 
 
then it is natural to think of quantifiers inside  holds  as ranging over only those individuals 
that exist at the time mentioned, so that one might write 
 
 (holds  (not (exists (?x)(and (heavierthanair ?x) 
      (flyingmachine ?x)))) 
   1800) 
 
With this interpretation,  holds  is referentially opaque. 
 
The simplest way to interpret this language (still thinking of times as points or point-like 
intervals) can then be defined by extending the recursive translation with the following 
two rules: 
 
 (holds  (forall (?x) φ)  ?t)   --->    
   (forall (?x)(=> (existswhen ?x ?t)(holds  φ ?t))) 
 
 (holds  (exist (?x) φ)  ?t)   --->    
   (exist (?x)(and (existswhen ?x ?t)(holds  φ ?t))) 
 
where existswhen is the relation mentioned earlier which relates something to the time 
when it is exists. The quantifiers after this translation are syntactically identical to those 
before, but have a rather different meaning: they are timeless, while those before are 
temporally restricted. Again, however, if propositions hold during  (nonquiescent) 
timeintervals, then the existential translation has to be more baroque: 
 
(holds  (exist(?x) φ)  ?t) --->  
   (forall (?s)(=>(in ?s ?t) 
    (exist (?x)(and (existswhen ?x ?s) 
     (exist (?u)(and (in ?u ?s)(holds  φ ?u))) 
      )) 
     ))   
) 
 
(To see the need for all this fuss consider a relay race, let  φ mean that ?x is carrying 
the baton, and suppose that the first runner dies of heart failure after his lap, but before 
the race is over. Somebody is carrying the baton even when one of the earlier carriers has 
ceased to exist.  Or consider a belt delivering pieces of coal to a furnace, and the claim 
that it is never empty.) 
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One claimed advantage of this holds notation is that it allows a variety of different ways 
that something  might  be true at a time. Allen (1984) for example distinguishes between 
propositions (he calls them properties) which hold and satisfy subinterval inheritance, 
events  which occur and are never inherited by subintervals, and processes  which also 
occur but which are inherited by some subintervals.  Galton (1990) similarly distinguishes 
three kinds of holding;  holds-at, meaning true at a point,  holds-in and holds-on.  I have not 
yet found a need for this apparent advantage, however. The distinctions seem to always 
be describable as differences in the kind of interval or kind of proposition, obviating the 
need for the notational and axiomatic complexity introduced by such intricate distinctions 
of vocabulary.  
 
2.3 Tenses1   
 
Tense logics extend conventional logics by  modal operators corresponding to the English 
past and future tenses, so that one would write 
 
 (F (married joe anne) ) 
 
to mean that Joe will be married to Anne at some time in the future, without mentioning 
times explicitly.  P similarly refers to the past. Tense logics do not usually provide any 
way to refer to dates directly, and one would need to write something like 
 
 (F (and (married joe anne) (date-is 1993)) ) 
 
to convey such information (and provide axioms for date-is, of course).  Tense operators 
are part of the sentential syntax in just the same way as the propositional connectives, so 
that one can have such assertions as 
 
 (F (and (not (married joe anne)) (P (married joe anne)))) 
 
which says that Joe and Anne will be divorced at some time in the future. 
 
Notice that there is an implicit  "now" in such an assertion. These languages are temporal 
in a rather deeper sense than the previous ones, since here the very act of assertion is 
itself understood to have a temporal location.  A tense-logical sentence only makes sense 
relative to a time when it is understood to be asserted. The usual model theory for such 
languages interprets a sentence to mean a function from temporally possible worlds to 
truth-values.  Different axioms for F and P correspond to different assumptions about the 
relationships between these possible worlds, which amount to different assumptions 
about the structure of the time-plenum.  
 
Tense logics can usually be translated into a theory written using  holds.  The usual 
method of translation introduces a binary ordering relation between times. It amounts to 
a recursive application of the following transformation function Σ, which takes a sentence 
φ in tense logic and a variable  ?t  denoting a time, to a sentence in the  holds  language: 
 
If φ contains no modal operators then     

                                            
1 Tense logics are thoroughly described in the logical literature and their properties well 
understood. I mention them here only for completeness. This brief section is not an adequate 
introduction to the subject. 
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Σ[φ,?t]           -->     (holds  φ ?t)  
 
and otherwise 
 
Σ[F(φ),?t]  ->  (exists (r)(and(before ?t, ?r)(holds  Σ[φ, ?r] ?r)) ) 
Σ[P(φ),?t]  ->  (exists (r)(and(before ?r, ?t)(holds  Σ [φ, ?r] ?r)) ) 
 
where  ?r is a variable different from any other free variables.  This captures the standard 
semantics of the modal operators, which contain an implicit quantification over temporally 
possible world, here regarded as times.  Different modal logics correspond to different 
axioms describing the relation before. 
 
For example, the earlier assertion concerning the future divorce of Joe and Anne 
translates into: 
 
 (exists (?t1,?t2) (and (later ?t1,?t)  
     (later ?t1,?t2)  
     (holds  (married Joe Anne), ?t2) 
     (holds  (not (married Joe Anne)),?t1)  )) 
 
Notice that the variable ?t is free in this expression . The translation process always 
leaves a single free temporal variable corresponding to the implicit ‘now’.  
 
This rather simple translation from modal tense logic to a nonmodal language is not 
always completely adequate to capture some of the more complex tense-logics, in 
particular those involving a “continuous present” in which there is a modal operator 
corresponding to the assertion that something is happening,  as opposed to merely true.  
Nevertheless, similar translations into a nonmodal language are often possible, and many 
of the special temporal logics which have been developed for AI use are quite 
unnecessary.   
 
 
2.4  Temporal knowledge-bases 
 
Finally,  the language need have no explicit or implicit temporal reference, but simply be 
understood to be asserted (or believed) in a temporal framework, with some other 
mechanism keeping track of when it is supped to be true.  Typically, the context is a 
database or knowledge-base of some kind which is keeping track of a changing world, and 
the problem is to maintain consistency with the changing state of the environment. 
Examples include dynamic control of a robot or an industrial system,  knowledge fusion in 
military command situations, 'temporal databases' and truth-maintenance methods.  
While such a wide variety may not be solvable by a single technique,  they all involve 
temporally sensitive representations in which the representation language  itself 
temporally 'located' and often therefore need not make explicit reference to  times. 
 
In these cases there is often a sense that processes which manipulate sentences need to 
be made sensitive to the passage of time, in contrast to the typical planner which uses 
the first kind of notation to reason about times but has no way to express the concept of 
'now'. 
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If a temporally located language is itself temporally expressive, then the situation 
becomes more complex.  Under these circumstances the meaning of 'now' is constantly 
changing in a way which can be expressed in the language, so that future is constantly 
becoming the present. If the language is suitably expressive this introduces many 
complex representational problems which are beyond the scope of this document. For 
example, I know of no really satisfactory way of formalising the meaning of a statement 
of urgency such as “we must act soon or the bridge will collapse”, one that would enable 
us to infer the need to stop wasting further time doing more inference. It seems to be 
necessary to assume something like an interrupt architecture in the structure of the 
reasoner, for example.  
 
Issues like this arise in manipulating temporal databases, especially when data entries 
which refer to the past are liable to correction in the future. For example, temporal 
database terminology (Snodgrass et al 1993) distinguishes the transaction time of a 
record - the time when it was entered into the database - from the valid time, which is 
the time that the event or proposition it represents is asserted to be true.   
 
3.  Temporal Theories 
 
The theories we consider differ in several respects, both in their axiomatic style and in the 
intuitions they support.  Most theories are consistent with the following ideas: 
 
1.  A timeinterval is a connected piece of the time-plenum. Things that have a temporal 
extent, or which occupy time in some way, must have a timeinterval which is their life-
span.  
2. Every interval has a unique temporal magnitude.  
3. An interval has two endpoints, and is uniquely determined by those endpoints. 
4. A point can be uniquely determined by the magnitude of the interval between it and 
some special 'zero' temporal position (such as midnight, or January 1 of the year zero) 
 
All of this is compatible with various ideas about the structure of the continuum.  Some 
theories describe the point continuum, others the glass continuum, and others assume 
discrete atoms of time.  All the axioms use nontemporal quantification, referring to times 
explicitly as objects. 
 
Notation 
 
Theory boundaries are indicated in the text and given exactly in Appendix 3. NOTE: 
simply conjoining all the axioms listed in a sect ion may not always form a 
coherent theory, since alternatives are often listed together.  All the axioms and 
definitions are given in KIF, (although KIF-style notation is also used to discuss other 
axioms which are not correct KIF, notably second-order axioms. ) Sequence quantification 
is sometimes used, and variadic relations are used when convenient, but most of the 
axioms are equivalent to simple first-order logic.  KIF text is written in Courier font. 
 
Every axiom has been given a name, following some simple naming conventions. A theory 
name is all uppercase. An axiom name like LP-foo means an axiom called foo in the theory  
LP (or sometimes, to save space, a contraction of the full name is used), but a name like 
foo-LP means the definition of the name foo in the theory LP, and a name like foo-LP-baz 
means part of the definition of foo in the theory LP.  
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Whether or not a theory constitutes an ‘ontology’ is still an open question at the time of 
writing. The chief problem seems to be the question of definitions. In an ontology every 
name must have a ‘definition’, but in a nontrivial logical theory it is impossible for every 
relation and function name to have a defintion, since defined terms are eliminable.  In 
Appendix 3,  definitions are indicated as far as possible using the distinctions in KIF, so 
that ‘ := ‘ indicates a logical definition  while the weaker sense of ‘definition’ really only 
means something like ‘relevant to’, and indicates a collection of axioms which constitute a 
theory of the name in question. Some names can’t have a definition, notably the basic 
sortal predicates such as timepoint; while in other cases, it is impossible to separate the 
axioms into disjoint sets each of which defines one name.   The name index in Appendix 2 
gives, for each relation and function name, a list of the theories which can be taken to 
establish its meaning in one way or another. 
 
For many of the theories we discuss several possible models or classes of models, 
especially nonstandard  models which differ in some respect from the intended intuition.  
This is a deliberate attempt to show the limitations of expressive power that many axiom 
sets have. That axioms have nonstandard models is not necessarily a condemnation of 
them, however, and is not meant to be so taken. Any first-order theory of arithmetic has 
nonstandard models, for example. 
 
The chief categories are indicated by the relations  timepoint, timeinterval and 
timeduration. These relations are all predicative,  i.e. they are variadic but simply assert 
that a unary predicate holds of all their arguments. A relation Ψ is predicative when: 
 
 (forall (?x @l) (<=> (Ψ ?x @l)  
    (and (Ψ ?x)(Ψ @l)))) 
 
Another use of variadic notation throughout this document will be in propositions 
involving chained relations. A relation is chained when it asserts a binary relation between 
each of its arguments in succession, ie when: 
 
 (forall (?x ?y @l) (<=> (Ψ ?x ?y @l)  
    (and (Ψ ?x ?y)(Ψ ?y @l)))) 
 
Examples of chained relations include equality, the temporal ordering of timepoints and 
the  meets relation between intervals. A chained relation may or may not be transitive. 
 
These axioms can be transcribed into KIF by using the ‘holds’ notation by the following 
three axioms, which constitute the theory BASIC-SYNTACTIC-TOOLS used throughout the 
rest of the catalog: 
 
;;predicative-BASIC 
(defrelation predicative (?r) := 
     (forall (?x @l) 
             (<=> 
              (holds ?r ?x @l) 
              (and (holds ?r ?x) (holds ?r @l))))) 
 
;;chained-BASIC 
(defrelation chained (?r) := 
     (forall (?x ?y @l) (<=> (holds ?r ?x ?y @l) 
                             (and (holds ?r ?x ?y) (holds ?r ?y @l))))) 



 15 

 
;;BASIC-syntax 
(predicative predicative chained) 
 
 
3.1. Simple Point Axioms 
 
These axioms simply describe an ordering of timepoints. Intervals, etc. are not mentioned. 
The chief interest of this is to act as a definitional support  for later, more complex, 
theories. 
 
All the quantifiers in the axioms in this section should be understood to be restricted to 
timepoint  when the axioms are used in a broader context. This restriction is omitted 
here for clarity. 
 
;;LP-syntax 
(predicative timepoint) 
 
 
There is one relation,  before,  between timepoints. It is a chained relation: 
 
;;before-LP-syntax 
(chained before) 
 
It should follow from before-LP-syntax and BASIC-SYNTACTIC-TOOLS that  
(chained before) 
and hence follow from  
(before a b c)  
 
that (before a b) and (before b c).  
 
Right now (10/10/94) I am not certain that this does follow in KIF , in fact.  
 
Ordering axioms: before is transitive, irreflexive and linear: 
 
;;before-LP-trans 
(forall (?x ?y ?z)(=> (and (timepoint ?x ?y ?z)(before ?x ?y ?z)) 
                      (before ?x ?z))) 
 
;;before-LP-irreflex 
(forall (?x)(=> (timepoint ?x)(not (before ?x ?x)))) 
 
;;before-LP-order 
(forall (?x ?y)(=> (timepoint ?x ?y) 
                   (or (= ?x ?y) (before ?x ?y) (before ?y ?x)))) 
 
These axioms are sufficient to guarantee that all timepoints lie on a single line.  However, 
it allows that line to be either finite or extremely infinite, as in the nonstandard models 
described below. 
 
Time is infinite in both directions: 
 
;;before-LP-infinite-past 
(forall (?x)(=> (timepoint ?x) 
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                (exists (?y)(and (timepoint ?y)(before ?y ?x))))) 
 
;;before-LP-infinite-future 
(forall (?x) (=> (timepoint ?x) 
                 (exists (?y) (and (timepoint ?y)(before ?x ?y))))) 
 
 
This pretty much accounts for the overall shape of the temporal universe of points, 
although it will be useful later to define the ‘before-or-equal’ relation: 
 
;;bbefore-LP 
(defrelation bbefore (?x ?y) := 
(and  
(chained bbefore) 
(<=> (bbefore ?x ?y)(or (before ?x ?y)(= ?x ?y))) 
 
 
These axioms constitute the basic theory of point-ordering, called LINEAR-POINT, or LP. 
 
The fine structure can be described in two different ways,  as dense or discrete. 
 
Fine-structure axioms: 
 
;;LP-dense 
(forall (?x ?y) (=> (timepoint ?x ?y) 
                    (=> (before ?x ?y) 
                         (exists (?z)(and (timepoint ?z) 
                                          (before ?x ?z ?y)))))) 
 
This asserts that timepoints are dense.  Adding this to the definition of ‘before’ produces 
the theory DENSE-LINEAR-POINT, or DENSE-LP 
 
An alternative (and inconsistent) assumption is that there is an atomic spacing of 
timepoints which allow no closer divisions; ie, that there simply are no points between 
two adjacent atomic 'ticks'. This is a bit more complicated to express: 
 
;;DLP-discrete 
 
(forall (?x)(=>(timepoint ?x) 
        (and 
         (exists (?y) 
                 (and (timepoint ?y) 
                      (before ?x ?y) 
                      (not (exists (?z)(and (timepoint ?z) 
                                            (before ?x ?z ?y))))) 
          (exists (?y) 
                  (and (timepoint ?y) 
                       (before ?y ?x) 
                       (not (exists (?z)(and (timepoint ?z) 
                                             (before ?y ?z ?x))))))))) 
 
Adding this to LP produces DISCRETE-LINEAR-POINT, or DLP. 
Notice that DLP-discrete already has the infinity assumptions built into it, so the infinity 
axioms are redundant in DLP 
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Van Benthem (1983) shows that  DENSE-LP and DLP are syntactically complete.  That is, 
any assertion using this (admittedly rather restricted) vocabulary which is true in all first-
order models of these axioms can be deduced from these axioms. They entail all there is 
to be entailed; all sentences (written in this vocabulary) which are consistent with them, 
are already provable from them.  
 
So there's nothing more to be said about linearly ordered times without extending the 
vocabulary in some way.   
 
Models 
 
The obvious models are the rationals Q of DENSE-LP and the integers N of DLP. The real 
line R is also a model of DENSE-LP, but it is not easy to distinguish Q from R within a 
first-order theory.  
 
However, there are also many nonstandard models. For example, consider the rational 
plane with  
 
 <a,b> before <c,d>   iff     a<c    or    a=c and b<d.  
 
This amounts to Q copies of Q ordered in sequence, and it is a model of DENSE-LP.  
Similarly, N copies of N ordered in sequence is a model of DLP. These first-order theories 
are not sufficiently powerful to state that all pairs of points are only a finite distance 
apart; they can describe the ‘local’ structure of the line, but all they can say about the 
‘global’ structure is that it is a total order, and to fully capture the structure of the line 
one needs to say more than this, as the existence of these models shows. 
 
The key problem is how to express ‘finite’. In the standard models two points can only be 
a finite distance apart, and this cannot be expressed in this (or any other) first-order 
vocabulary. For example, an axiom which says that the distance between two points is 
always an integer is still true in the nonstandard models. 
 
Exactly what counts as a 'point' is also not clearly specified by these simple theories. 
Consider for example the model of DLP created from the standard model by simply 
removing the closed unit interval around zero, so that  
 
a before b  iff  (a < b < -1) or (a < -1 and b > 1) or (1 < a < b) 
 
This line with a hole in it (or, with the zero point swollen into an interval) is 
indistinguishable from the standard model from within this theory. It is order-isomorphic 
to the rational line. 
 
Theories which more exactly specify the standard models can be got by adding a little 
second-order expressiveness, provided of course that these second-order quantifiers are 
understood to have the standard interpretation, ie varying over all properties. Adding the 
following axiom to DENSE-LP specifies the integers up to isomorphism. (This is Dedekind's 
principle of continuity, asserting that whenever a property changes with time, there must 
be a 'dividing point' which separates the times when it is true from those when it is not 
(taken in this form from Van Benthem 1983).) When added to the DLP theory this still 
does not quite nail down the standard interpretation, since R copies of R is still a 
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nonstandard model, but it forces the models to be suitably dense in timepoints, ruling out 
the mere rationals and guaranteeing that there are no gaps. 
 
Dedekind:   (forall (?p)(=> 
             (and 
                 (exists (?x)(?p ?x)) 
                 (exists (?x)(not (?p ?x)))  
                 (forall (?x ?y)(=>(and(?p ?x) 
                                       (not(?p ?y))) 
                                   (before ?x ?y))) 
              ) 
              (exists (?z)(forall (?u) 
                               (and  (=>(before ?u ?z)  
                                        (?p ?u)) 
                                     (=>(before ?z ?u)  
                                        (not (?p ?u)) 
                                ) 
              ))) 
 
When interpreted in the integers, the ?z asserted to exist is the last integer when ?p is 
true (or the first where it is false); when interpreted in the reals, it is the 'dividing' point 
where the intervals of ?p's truth and falsity meet one another.  
 
To see how this rules out the nonstandard models, consider a model of DLP consisting of 
two copies of N, and let p  be the property of being in the first half of this double-line 
model. Then there is no single point which ‘divides’ the points satisfying p from those 
that do not: but the Dedekind axiom requires such a point to exist.  
 
This property p is not expressible in the language, however, so if we interpret the 
second-order quantifier in the Henkin sense, ie as varying over all relations which can be 
named using the vocabulary of the theory, then the Dedekind axiom  no longer has the 
semantic force necessary to eliminate nonstandard models.  The importance of this lies in 
the fact that there is no computational way to distinguish a ‘classical’ semantics from the 
Henkin semantics, since second-order logic is complete relative to the Henkin 
interpretation. Dedekind is essentially second-order: a first-order transcription of it would 
not carry the semantic force needed to rule out the nonstandard models of out axioms. 
 
We could take bbefore as the basic relation and define  (before ?x ?y) as  
(and (bbefore ?x ?y)(not(bbefore ?y ?x))). This has the advantage of not 
needing to use equality.  However, there are now some rather unintuitive models, eg one 
in which the  bbefore  relation is circular and the  before  relation is therefore 
everywhere false. These correspond to nonstandard models of equality which allow 
equivalence classes of indistinguishable individuals. If the logic has equality, then asserting 
the connection is sufficient to explicitly eliminate these peculiar interpretations: 
 
     (forall (?x ?y) 
         (=> (bbefore ?x ?y ?x)  (= ?x ?y))) 
 
 
A useful extension to the vocabulary is provided by skolemising  DLP-discrete, which 
gives the functions “next” and “previous”: 
 
;;next-DLP 
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(deffunction before  
(forall (?x)(=>(timepoint ?x) 
        (and 
         (before ?x (next ?x)) 
         (not (exists (?z)(and (timepoint ?z)  
                               (before ?x ?z (next ?x))))) 
)))) 
 
;;previous-DLP 
(deffunction previous 
(forall (?x)(=>(timepoint ?x) 
        (and 
         (before (previous ?x) ?x) 
         (not (exists (?z)(and (timepoint ?z)  
                               (before (previous ?x) ?z ?x))))) 
)))) 
 
3.2  Alternative: nonlinear time 
 
If we simply omit  before-LP-linear then timepoints can be only partially ordered. Then 
for example one model is the real plane with <x,y> before <u,v> just when x<u, which 
allows every point to have infinitely many immediate successors and predecessors.  Often 
we want to insist that time only branches in the future direction. To do this, replace the 
axiom with:  
 
;;before-BP-order 
(forall (?x ?y ?z) 
        (=> (and (timepoint ?x ?y ?z)(before ?y ?x) (before ?z ?x)) 
            (or (= ?z ?y) (before ?z ?y) (before ?y ?z)) 
        )) 
 
This allows a 'forest' of branching structures. To restrict to a single tree add: 
 
;;before-BP-tree 
(forall (?x ?y) 
        (or (= ?z ?y) (before ?z ?y) (before ?y ?z) 
            (exists (?z) (and (before ?z ?x) (before ?z ?y))))) 
 
which forces all timepoints to fit into a single tree-structure.  
 
If we make these changes and omit the backward-infinity axiom (to allow the common 
interpretation in planning systems in which a 'start' time is considered for the planning 
process), the resulting theory is christened BRANCHING-POINT. Just as in the linear case, 
this can be extended by assuming either density or discretness. The density axiom LP-
dense works here as before, but the discreteness axioms needs to be stated slightly 
differently. 
 
;;BP-discrete 
(forall (?x)(=>(timepoint ?x) 
   (and (exists (?y) 
           (and (timepoint ?y) 
                (before ?x ?y) 
                (not (exists (?z)  
                           (and (timepoint ?z)(before ?x ?z ?y)))))) 
        (=> (exists (?y)(and (timepoint ?y) (before ?y ?x))) 
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            (exists (?y) (and (timepoint ?y) 
                              (before ?y ?x) 
                              (not (exists (?z)(and (timepoint ?z) 
                                              (before ?y ?z ?x))))))))  
))) 
 
Adding BP-discrete to BRANCHING-POINT gives the theory DISCRETE-BRANCHING-POINT or 
DBP. 
 
Models 
 
Possible models include any suitably large tree-structured graph. In particular, a Herbrand 
universe of terms provides a model, in which before denotes the subterm relation. 
(Notice this would no longer be true if we add the backward infinity axiom, since there are 
always terms with no subterms.) 
 
Any model of the linear theory is also a model of the corresponding branching one, of 
course, so the nonstandard “stretched” orderings are still possible here. However, there 
are also other more exotic possibilities. For example, consider the set of finite sequences 
of integers, and interpret before as the initial-subsequence relation. Then the 
timeordering is like the integers, satisfying BDP, but every time has infinitely many 
immediate successors, so the branching rate is infinite. It is not clear whether this should 
be regarded as “nonstandard”, however. I do not know how to specify simply that the 
branching rate is finite without describing some definite branching pattern. 
 
If we add the backward infinity axiom then infinite-branching models are still possible. For 
example, consider infinite sequences of integers  which are not isomorphic to a 
subsequence of themselves. Think of these as directed backwards in time, so each 
represents an infinite history reaching to the present. Now let before denote the tail-
subsequence relation. Again there is infinite branching, but now each time also has an 
infinite past.   
 
3.3  Alternative: Situation calculus time 
 
The interesting part of the situation calculus notation from our perspective is how it 
describes timeordering.  Times –situations – are partially ordered by the structure of the 
'do' terms which can be generated by instantiation from those which occur in the action 
axioms.  The set of possible such terms amounts to a subset of the Herbrand universe of 
the language.   
 
Situation calculus axiomatisations succeed as a basis for planning only if their ways of 
referring to situations are restricted to this subset. For example, suppose that we wish to 
assert an optimistic claim that somewhere in the future of any situation, it will rain 
pennies from heaven. It would be natural to write something of the form  
 
****   (forall (?s) (exists (?t) (and (before ?s ?t) 
                                 (rains-pennies-from-heaven ?t)) )) 
 
But when skolemised, this would completely trivialise the task of budgetary planning: just 
do the skolem function. The situation theory implicitly assumes that functions from 
situations to situations represent actions that can be performed, not just assertions 
about times that may exist. Because of this restriction, we could connect the usual 
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situation-calculus notation to the present theories by asserting that one time is before 
another just when there is a sequence of actions which take the first to the second. This 
can be stated in KIF using sequence variables, as follows. 
 
;;done-BDP 
(deffunction done  
(forall (?s ?a @l)(and 
                    (= (done ?s ?a @l) (do ?a (done ?s @l))) 
                    (= (done ?s ?a) (do ?a ?s)) )) 
) 
 
That is,  done takes a situation and a sequence of actions and returns the situation 
resulting from do-ing those actions in that sequential order.  The following axiom can then 
be regarded as an alternative definition of the point-ordering relation before in terms of 
the do relation.  
 
;;before-do-BP 
(forall (?x ?y) (<=>(exists (@l)(= ?y (done ?x @l)) ) 
                   (before ?x ?y))) 
 
Notice the biconditional, which makes this rather a strong claim;in particular, makes it 
inconsistent with the density assumption. (If the biconditional is replaced with a simple 
forward conditional then the theory is consistent with density, but then this axiom cannot 
be regarded as a definition of before.) Transitivity now follows from properties of 
sequences. Irreflexivity however is not trivial: it essentially asserts that there are no 'null' 
actions. Backward-infinity  must be rejected. Forward-infinity can be added, but it is 
consistent only when the preconditions are such that it is always possible to apply an 
action. (This would be satisfied, for example, by having two actions each of which undoes 
the effect of the other.) 
 
3.4  Variations 
 
Essentially the same ideas can be expressed in different ways.  
 
a. Cohistorical (replaces 3a/b) 
 
Cohistorical is a chained relation meaning  'on the same time-line': 
 
(defrelation cohistorical (?x ?y) :=  
  (and 
  (<=> (cohistorical ?x ?y)  
   (or(= ?x ?y)(before ?x ?y)(before ?y ?x)) ) 
  (<=> (cohistorical ?x ?y @l)  
    (and (cohistorical ?x ?y) (cohistorical ?y @l))) 
 
The linearity axiom can then be expressed more neatly  by : 
 
 (forall(?x ?y)(cohistorical ?x ?y))) 
 
and the tree axiom for branching time by 
 
 (forall (?x ?y ?z)(=> (and (before ?y ?x) (before ?z ?x)) 
     (cohistorical ?y ?z))) 
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b. Timelines 
 
Still another variation introduces timelines explicitly.   
 
We use a relation  on  between a timepoint and a timeline.  
 
;;on-Timeline-1 
(forall (?x ?y)(=> (timepoint ?x ?y) 
        (<=> 
         (exists (?h) (and (timeline ?h)(on ?x ?h) (on ?y ?h))) 
         (or (= ?x ?y) (before ?x ?y) (before ?y ?x)) ))) 
 
Now, to assert linearity we can just claim that timelines do not overlap: 
 
;;on-Timeline-2 
(forall (?h ?k) 
        (=> (and (timeline ?h ?k)(exists (?x) 
                   (and (timepoint ?x)(on ?x ?h) (on ?x ?k))) 
            (= ?h ?k) )) 
 
This allows several timelines to exist, but they can have no connection to one another.  
We can capture the branching structures by insisting that overlapping is only possible in 
the past: 
 
;;on-Timeline-3 
(forall (?h ?k ?x) 
        (=>  (and (timeline ?h ?k)(timepoint ?x)(on ?x ?h) (on ?x ?k)) 
             (forall (?y )(=> (timepoint ?y) 
                     (=>(before ?y ?x) 
                        (<=>(on ?x ?h) (on ?y ?k)) 
                        )) 
                     ) 
             )) 
 
 
 Several authors have argued that since time itself is linear,  the apparent branching of 
alternative futures should be thought of as just one kind of hypothetical reasoning about 
alternatives, having no particular connection with time. The right way to think of the 
branching futures axioms, on this view, would be as alternative world-lines in which only 
the future is allowed to vary, presumably on the grounds that less is known about it than 
about the past.  This intuition can be described reasonably well here by distinguishing two 
kinds of existential claim. A quantification over a timeline represents a claim of possibility, 
but  a quantification over a timepoint within a timeline is a temporal statement. 
 
c.  tick-tock 
 
Discrete time can be explicitly identified with the integers by assuming a function tick  
and its inverse tickof: 
 
;;TT-syntax 
(and (forall (?n) 
             (<=> (integer ?n) 
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                  (timepoint (tick ?n)) 
                  (forall (?x) (<=> (timepoint ?x) 
                                    (integer (tickof ?x)) ))))) 
 
;;tickof-TT 
(and (forall (?x) (= ?x (tick (tickof ?x))) 
             (forall (?n) (= ?n (tickof (tick ?n)))  ))) 
 
 
The discreteness axiom follows from this  (by identifying the ?y variables with (tick n-1) 
and (tick n+1)), and the 'infinity' axioms can obviously be omitted.  The useful functions  
next and before can be defined: 
 
;;next-TT 
(defunction next (?x) := (tick (+ 1 
                                     (tickof ?x)))) 
 
;;before-TT 
(forall (?x ?y) (<=> (before ?x ?y) 
                     (< (tickof ?x) (tickof ?y)))) 
 
and the earlier ordering can be defined using the conventional arithmetic vocabulary in 
the obvious way: 
 
  (forall (?x ?y)(<=> (before ?x ?y) 
                      (lessthan (tickof ?x)(tickof ?y)))) 
 
Models 
 
This style of axiomatisation depends crucially upon the arithmetical terms 'integer' , 'plus' 
and 'lessthan'. If we take the meaning of these to be independently established, then the 
only models of the tick-tock language are isomorphic to the integers, ie standard models. 
While there is no first-order theory which can make such a guarantee, writers of axioms 
often simply assume that such language is available. 
 
If we do not make this assumption, then of course many nonstandard models exist.  
 
Some apparently unimportant, but potentially confusing, variations are possible between 
different conventions for how intervals are described in terms of 'ticks'.  The pair  
<tick(n),tick(m)> can be thought of as identifying an interval in at least three different 
ways, as shown in figure 1. The first thinks of the interval as containing these as its end-
ticks, so that the intervals <...,tick(m)> and <tick(m+1),...> meet one another with no  
space between. The second thinks of tick as identifying the spaces between  atomic 
moments of time, so that the intervals  <...,tick(m)> and <tick(m),...> meet one another. 
We will use this second convention. 
 
However,  these axioms are also consistent with the idea that a timepoint is an 'atomic' 
interval, by using the  third convention illustrated, where an interval is identified by its 
last time-tick, so that the interval would be described as  <tick(n-1),tick(m)>.  In the first 
case, the interval <tick(m),tick(m)> contains a single clocktick; in the second and third 
cases such a construction is meaningless, and the single-tick moment would be described 
as   <tick(m-1),tick(m)>.  The difference between the second and third cases 
corresponds to the difference between thinking of timepoints as lying between moments, 
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or as being atomic moments themselves. Much of the literature on temporal databases 
fails to distinguish between timepoints and moments, using the term 
“instant”ambiguously for both.  As we show later, there is a coherent theory which 
supports this ambiguity, but it is not consistent with conventional real analysis. 
 

mn

mn

mn

 
 
                Figure 1.    Three ways to label end-ticks 
 
 
4. Interval theories 
 
The axioms in this chapter all quantify over intervals of time. Intervals are not totally 
ordered, and a wide variety of relationships  might hold between two intervals even if we 
assume, as I usually will in this section, that time is linearly ordered. Allen (1984) lists 
thirteen relations; equality and the following six plus their inverses (ie with arguments 
reversed)  precedes, meets, overlaps, starts, finishes  and during.   This is often taken to 
be a standard set, but we will also consider theories which use subsets of these and 
which use different sets of relations.  Any relation between intervals (on the line) can be 
defined in terms of these six, but smaller sets also suffice to define them all. We will give 
a theory expressed entirely in terms of meets within which all the relations can be 
defined, for example.  These thirteen relations are all the relations which completely 
specify the relative orderings of the endpoints of the intervals. This suggests a way to 
define them within the timepoint theories, and we also present a theory based on this 
intuition.  
 
The distinction between dense and discrete time also runs through these theories. Most 
of them can be extended by axioms which restrict to one or the other case, but they are 
also often consistent with the idea that time is dense in some places and discrete in 
others. 
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4.1 Intervals as information  
 
An interval might be thought of as giving partial information about the location of a point: 
as an approximation to a point, in a sense.  Two intervals might be sufficiently distinct 
that they establish the relative ordering of the points they contain: following Allen, we will 
call this relation precedes (although we think of it as more like the disjunction of his 
precedes and meets relations.)  On the other hand, one interval might surround the same 
point as another but more precisely; let us call this finer. Both are orderings, but  finer 
is partial and precedes is total. 
 

                         

precedes

finer

 
 
The following axioms constitute a theory called APPROXIMATE-POINT, since it treats 
intervals as approximations to points. 
;;AP-Syntax 
(chained precedes finer) 
 
;;AP-Trans-1. 
(forall (?x ?y ?z) (=> (precedes ?x ?y ?z) 
                       (precedes ?x ?z))) 
 
;;AP-Trans-2 
(forall (?x ?y ?z) (=> (finer ?x ?y ?z) (finer ?x ?z))) 
 
;;AP-reflex 
(forall (?x) (and (not (precedes ?x ?x)) (finer ?x ?x))) 
 
;;AP-finer-asym 
(forall (?x ?y)(=> (finer ?x ?y ?x) 
                   (= ?x ?y))) 
 
If two intervals are not clearly separate, then they must somehow intersect. That is, there 
must be a shorter interval contained in them both. This leads to the axiom corresponding 
to the total-order assumption for points: 
 
(forall(?x ?y)(or (precedes  ?x ?y) 
   (precedes  ?y ?x) 
   (exists (?z)(and  (finer  ?z ?x) 
      (finer  ?z ?y))) 
 )) 
 
It is easier to state this using an intermediate concept of ‘not clearly distinguishable 
from’, or ncdf: 
 
;;AP-ncdf 
(defrelation ncdf (?x ?y) := 
  (exists (?z) (and (finer ?z ?x) (finer ?z ?y)))) 
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ncdf plays the role here that equality does in the linear-point theory (which might be 
called an exact-point theory): 
 
;;AP-orthogonal-1 
(forall (?x ?y) 
        (or (ncdf ?x ?y) (precedes ?x ?y) (precedes ?y ?x))) 
 
Comparing this with before-LP-linear shows how intervals can be interpreted naturally 
as approximations to points.   
 
The relation ncdf is not transitive,  since (ncdf a b) and (ncdf b c)  are consistent 
with (precedes a c): 

                            

a

b

c

 
However, under these circumstances there must be two subintervals  e  and  f    of   b 
such that (precedes e f), ie the overlapping interval can be separated into two 
subintervals which are order-distinguishable. 
 
We need a few more axioms which establish the connection between precedes and 
finer : 
 
;;AP-orthogonal-2 
(forall (?x ?y) (not (and (finer ?x ?y) (precedes ?x ?y)))) 
 
;;AP-separation 
(forall (?x ?y ?z) (=> 
                    (and  (finer ?x ?y) 
                          (precedes ?y ?z)) 
                    (precedes ?x ?z) ) 
        ) 
 
It now follows that the disjunction in  AP-orthogonal   is exclusive: for if (finer ?z ?x)  
and  (precedes ?x ?y), then (precedes ?z ?y)  by  separation;  but (finer ?z ?y), 
contradicting  the second orthogonality condition. 
 
 
Notice that of Allen's relations, precedes, overlaps , and during are the only ones which 
do not specify that two endpoints are identical, so we might expect them to correspond 
to these relations. Following the claim that we can only have approximate information, let 
us say that  meets, start,  and finish are always false.  Then we could read ncdf as 
meaning the disjunction of equality and the relations {o,d,di,oi}.  
 
The infinite extension of the timeline can be asserted in the obvious way: 
 
;;AP-infinite-past 
(forall (?x) (exists (?y) (precedes ?y ?x))) 
 
;;AP-infinite-future 
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(forall (?x) (exists (?y) (precedes ?x ?y))) 
 
However, this still does not guarantee that any large intervals exist.  For example, the set 
of all rational intervals less than unit length would satisfy the axioms so far. One way to 
assert this is to claim explicitly that there is an interval which is less precise than any two 
intervals: 
 
;;AP-large 
(forall (?x ?y) (exists (?z) (and (finer ?x ?z) (finer ?y ?z)))) 
 
Models 
 
This theory, in spite of its claims to infinite extension, can be straightforwardly 
interpreted as being entirely about the open subintervals of the unit real interval. The 
axioms guarantee that there there will always be a future, but they say nothing about 
how long that future may last. This can only be achieved by talking about the durations 
of intervals, as in section 6. 
 
Density, which in a sense is the opposite of AP-large, is also straightforward: 
 
;;AP-dense 
(forall (?x) (exists (?y) (and (finer ?y ?x) (not (finer ?x ?y))))) 
 
Although this way to describe density is fairly standard, its practical utility is not so 
obvious. The axiom rules out non-dense models by insisting that finer and finer 
distinctions must be possible. If we skolemise this and think of it computationally, it can 
be interpreted as saying that finer measurements are always possible.  In practice this is 
not usually the case, and there is a definite limit to the precision with which 
measurements can be made, a 'grain size' past which it is not possible to discriminate 
separate points; or, equivalently, a size below which intervals seem like points. We could 
just say that the world is therefore 'really' discrete, as is usually done in temporal 
databases, where times are usually reckoned as integer counts of a clock-tick (Snodgrass 
et al 1994). But this is unsatisfactory for several reasons. We would like to be able to 
work with the assumption of density up to a point, as it were; and second, discreteness, 
as it is usually  described, actually is too rigid. For example, it is quite possible for two 
clocks, both at our limits of discernment, to be beating out of phase with each other; but 
this is impossible if time itself is reckoned to be discrete.) 
 
Anyway, it’s about the only apple in the shop, so we will adopt it as the density axiom. 
Given this, the Allen relation of meets can be defined using the idea that the meeting 
place can be contained in finer and finer intervals.  If two intervals meet, and a third 
overlaps the meetingpoint, then if the line is dense it is always possible to find a 
subinterval which also overlaps that point and hence is  notclearlydistinguishablefrom 
both the touching intervals: 
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;;meets-AP-dense 
(defrelation meets (?x ?y) := 
             (and (precedes ?x ?y) 
                  (forall (?z) 
                          (=> (ncdf ?x ?z ?y) 
                              (exists (?u)  
                                      (and (finer ?u ?z)  
                                           (ncdf ?x ?u ?y))))))) 
 
Discreteness can be defined by following the intuitions behind those in the point axioms.  
First define a notion of an atomic clock-tick: 
 
;;moment-ADP 
(defrelation moment (?x) := 
             (not (exists (?y) (and (finer ?y ?x) 
                                    (not (= ?x ?y))) ))) 
 
or equivalently 
 
(defrelation moment (?x) := (forall (?y)(=>(finer  ?y ?x) 
        (= ?x ?y)) )) 
 
Discreteness could now be stated by the claim that all intervals have a next moment and 
a previous moment, following the definitions in the linear-point case; if, that is, we could 
express 'meets'.  To simply assert that there is a next interval, which works for point 
orderings, is not enough here, as this is true even on the rational line. The definition given 
for the dense case does not work here, but a simpler alternative is available: 
 
;;meets-ADP-discrete 
(defrelation meets (?x ?y) := 
             (and (precedes ?x ?y) 
                  (not (exists (?z) (precedes ?x ?z ?y))) )) 
 
And now we can state discreteness by  
 
;;ADP-discrete 
(forall (?x) 
        (and (exists (?y) (and (meets ?x ?y) (moment ?y))) 
             (exists (?y) (and (meets ?y ?x) (moment ?y))))) 
 
Models 
Open intervals on the rational line Q  or the real line  R  are probably the most intuitive 
models.  The axioms do not distinguish between open and closed intervals, and can be 
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interpreted in either way. For example, consider the universe of all open rational intervals 
and define precedes in the obvious way by  (a,b) precedes (c,d) just when b is less than 
or equal to c, and finer as the weak subinterval relation.  The same kind of nonstandard 
orderings (Q ↑ Q , ie Q copies of Q, etc.) are also models here, and for the same reason. 
They now take on some extra style, since there are now intervals which span entire 
copies of the rational line. In the nonstandard models there are also special nonstandard 
intervals which do not have endpoints, such as the interval in  Q ↑ Q  consisting of all 
rationals <A,b>  for some fixed A. 
 
AP does not requre all set-theoretic intervals to be in the universe, however. For example,  
it is satisfied on the integers. Indeed, a model of AP can be made from any model of the 
point theories by selecting any infinite subset E of points, and letting the universe of 
intervals be all pairs of points <a,b> with a,b ∈ E and a before b. Then two intervals meet 
just when they share an endpoint, and moments exist wherever E is not dense. 
 
 
4.2  Intervals meeting in the glass continuum 
 
Returning now to the idea of the continuum as consisting of intervals which meet at 
points, we assume only a single relation, meets, which is chained but not transitive.  
These theories can be regarded as axiomatisations of the intuition of the glass 
continuum. 
 
First we specify that when two timeintervals meet defines a definite temporal location. 
This axiom ‘ties together’ the various ways a meeting-place of several timeintervals could 
be specified. 
 
;;IM-syntax 
(predicative timeinterval) 
 
;;meets-IM-place 
(forall (?i ?j ?k ?m) 
        (=> (and (meets ?i ?k) (meets ?j ?k) (meets ?i ?m)) 
            (meets ?j ?m)  )) 
 

                               

i

j

k

m

 
 
Time is infinite: 
 
;;meets-IM-infinity 
(forall (?i) (exists (?j ?k) (meets ?j ?i ?k))) 
 
Until now this has been an essentially arbitrary assumption, but here it takes on extra 
importance since proofs often need those extra intervals to nail down the position of a 
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meeting-point. Notice however that being infinite, as noted earlier, does not guarantee 
infinite duration unless further assumptions are made. 
 
That time is ordered can be stated by following the intuition that a meetingplace is an 
endpoint, and insisting that these points be ordered: 
 
;;meets-IM-total-order 
(forall (?i ?j ?k ?m) 
        (=> (and (meets ?i ?j) (meets ?k ?l)) 
            (or (meets ?i ?l) 
                (exists (?n) (or (meets ?i ?n ?l) 
                                 (meets ?k ?n ?j) )) 
                ))) 
 
If the 'or' here were exclusive disjunction this would suffice, but we need to add the 
following to prevent time becoming circular: 
 
;;meets-IM-line 
(forall (?i ?j) (not (meets ?i ?j ?i))) 
 
The transitivity of the timeorder corresponds to the assumption that two meeting 
intervals form a single larger interval: 
 
(forall (?i ?j ?k ?m)(=> (meets ?i ?j ?k ?m) 
     (exists (?n)(meets ?i ?n ?m)) )) 
 
 
It is often convenient to replace this by its skolem form, using an explicit addition 
function on intervals: 
 
(deffunction plus 
(forall (?i ?j ?k ?m) (<=> (meets ?i ?j ?k ?m) 
                           (meets ?i (plus ?j ?k) ?m) 
                           )) 
) 
 
(This is not a logical definition as it does not specify a value for (plus a b) when a and 
b do not meet.) 
 
This provides a neat way to define the notion of a  moment: 
 
;;moment-IM 
(defrelation moment (?i) := 
  (forall (?j ?k) (not (= ?i (plus ?j ?k))) 
   )) 
 
These axioms constitute a small but surprisingly powerful theory within which all other 
binary temporal relations on intervals can be defined. 
 
Density and discreteness can be defined in obvious ways: 
 
;;IM-dense 
(forall (?i) (not (moment ?i))) 
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;;IM-discrete 
(forall (?i) (and 
              (exists (?j) 
                      (and (meets ?i ?j) (moment ?j))) 
              (exists (?j) 
                      (and (meets ?j ?i) (moment ?j))) 
              )) 
 
 
Models 
 
These axioms have models which reflect several of the intuitions which motivate the glass 
continuum, all of which can be regarded as in some sense “standard” models, although 
they are not mutually consistent. First consider the dense case. 
 
One model interprets intervals as open connected subsets of the rational line Q  (ie open 
intervals in the conventional mathematical sense of 'interval'),  asserts that (a,b) meets 
(c,d) just when b=c, and defines plus as the interior of the set-theoretic union of the 
closures of the intervals being added together.  Notice then that the sum of two intervals 
contains the point where they meet. In general, if more complex operations are defined, 
they are modelled by always taking the interior of the corresponding set-theoretic 
operation applied to the closures of the arguments. The intersection of two meeting 
intervals is always the interior of a single point, ie empty; so two meeting intervals are 
disjoint. 
 
This model amounts to a response to the intuitive puzzle discussed earlier which says 
that the point of division is in neither half of the split interval, but just somehow vanishes 
when they are considered seperately. 
 
Alternatively, a dual model is provided by closed connected subsets of Q, with subsets 
meeting just when they share an endpoint, and the sum of two intervals being defined to 
be the closure of the set-theoretic union of their interiors.  This means that two intervals 
which meet share the meeting point, but their interval-overlap is the closure of the 
interior of a singleton, ie the empty set. Thus there is no shared interval to play the role 
of  ?n  in the definition of overlap.   
 
This answers the puzzle by saying that the point of division is in both halves, but still 
insists that the two halves have an empty intersection. (The point might be thought of as 
identifying the surfaces of the two pieces of glass filament, which were in the same place 
before the break.)   
 
A third way to model this theory thinks of every point on the line as having two halves, 
one facing to the past and one to the future. Suppose we have two distinguished copies 
of Q, and write <a| for a member of one copy and |a> for the other: call these the past 
and future “halves” of the timepoint <a|a>. An interval denotes a pair <a|b> where a is less 
than b;  <a|b> meets <b|c>.  The meeting point  <b|b> is not an interval and is therefore 
“invisible” to the theory. While this may seem unnecessarily baroque, it supports the 
common naive intuition, when faced with the midpoint puzzle, that the midpoint itself 
must somehow be divided into two equal parts. 
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Note that these are all different from the standard model for the point continuum, in 
which a closed interval can only meet an open interval. They all refuse to distinguish 
between two kinds of interval, for example. 
 
These theories can also be interpreted as referring to the point continuum, however.  For 
example, one model is provided by the set of semiclosed rational intervals (a,b]  where  
(a,b] meets (b,c]. Here the meeting-point clearly belongs to the first interval, and a 
timeinterval is interpreted directly as a mathematical interval. 
 
Nonstandard models analogous to the nonstandard models of the point ordering theories 
also exist, of course. In fact, any model of a point-ordering theory can be extended to a 
model of the corresponding (discrete or dense) interval-meeting theory by defining 
intervals, and the meets relation, in any one of the three ways just described. 
 
Analogous models of the discrete theory can be constructed on the integers, but here 
simpler models are possible. One defines meets as the relation between [n,m] and [m+1,k].  
Here integers label moments [n,n], and meeting-points have to be thought of as between 
integers. Another model consists of the integer intervals [n,m] with n < m and defines 
meets as the relation between [n,m] and [m,k]; here integers label points and a moment is 
an interval [n, n+1].  A nonstandard model here might be provided by Q copies of N, 
which, as Van Benthem points out, is “locally” discrete even though having a dense global 
structure. 
 
Models of the basic theory can consist of moments inserted into other regions of density. 
Almost any combination is possible: in particular, nonstandard orderings  such as Q 
followed by N, or Q with several copies of N inserted into it.   
 
One class is of special interest, which I will call point-moment models.  Consider a 
continuous interpretation such as Q or R  with some selected subset M of isolated points 
(that is,  for any p,q∈ M, there must be a point r with p < r < q), and define an interval as 
a pair <a,a> where a ∈ M,  or <a,b> when  a<b ; and meets be true of <a,b> and <b,b> (and 
of <b,b> and <b,c>)  when b ∈ M, but of <a,b> and <b,c> otherwise.  M can be any subset 
of isolated points ; it can be finite or infinite, and its members can be arbitrarily close to 
one another. Moments are identified by the members of M.   
 
In such a model, a moment is being interpreted as a point, which is possible precisely 
because a moment has no internal structure. Point-moment models mix together some 
aspects of density and some of discreteness, so not surprisingly they are not models of 
either of the extended theories. (Not of density because moments exist, and not of 
discreteness because intervals with endpoints not in M – which must exist since M is 
isolated – do not satisfy the discreteness axiom.)  These models are discussed further in 
section 5.3.1. 
 
Constructing points in models of the intervals. 
 
Since this theory is so firmly based on the concept of an interval, it may be surprising 
that any model of it contains things that can be regarded as timepoints. This is less trivial 
than it sounds, since in many models mathematical points (eg rational numbers) are not 
suitable interpretations of timepoints, especially in models based on the glass continuum. 
The interest of this result is that these theories are sometimes claimed to be ‘point-free’, 
in the sense that they are described purely in terms of intervals sui generis, rather than 
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considering intervals as being defined by endpoints or consisting of sets of points. But 
such a claim has to taken with caution, since it is always possible to interpret this theory 
as talking about intervals constructed from points. 
 
Suppose M is any model of these axioms with universe (of intervals) U, and consider pairs  
<B,A> (for ‘Before’ and ‘After’ ) of subsets of U with the property that every member of 
B meets every member of A; call such a pair a focus. The idea here is that a focus locates 
the meeting-point. Suppose a focus is maximal when the sets B, A are as large as 
possible, so that B contains every interval in U that meets a member of A, and vice versa. 
Then maximal foci (called ‘nests’ in Hayes & Allen 1987) can serve as points. The 
ordering relation before of section 3.1 can be defined thus:  <B1,A1> is before <B2,A2> 
just when A1 ∩B2 is nonempty.  The interval in the intersection is the interval between 
the points: 

'point' B'point' A

interval [A,B] 

  
The function beginof from intervals to points is defined by: (beginof  i) is the point 
<B,A> with i ∈A; similarly for endof but i ∈ B.  That these are unique follows from the 
axioms and the assumption of maximality.  It is now straightforward to show that with 
these interpretations, all the axioms of the linear point theory LP and all the interval-
endpoint definitions given below are satisfied. Thus, any model of the interval-meeting 
axioms can be interpreted also a model of LP. This works equally well for  “nonstandard” 
models. 
 
This filter construction, originally due to A. N. Whitehead, may seem unintuitive: a point is 
very small, but these maximal foci are very large. But when one considers that the role of 
the focus is to isolate a point as precisely as possible, then the idea that it might take an 
infinite amount of information to isolate something infinitely small makes the filter seem 
somewhat more compelling. 
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4.3  Thirteen  Relations 
 
Probably the most familiar temporal theory is often described as being based on the 
thirteen relations described earlier. In this section I will use the compact notation used by 
Allen (1984) and extended by Freska(1992) where each relation is denoted by its intial 
letter , followed by ‘i’ to indicate the inverse. 
 
The thirteen relations are an exhaustive and mutually exclusive set: 
 
;;TT-list 
(forall (?x ?y) 
    (=> (timeinterval ?x ?y) 
        (xor (p ?x ?y) 
             (o ?x ?y) 
             (m ?x ?y) 
             (s ?x ?y) 
             (d ?x ?y) 
             (f ?x ?y) 
             (= ?x ?y) 
             (fi ?x ?y) 
             (di ?x ?y) 
             (si ?x ?y) 
             (mi ?x ?y) 
             (oi ?x ?y) 
             (pi ?x ?y) ) 
     )) 
 
Notice the use of exclusive-or here. This axiom can be written rather more tediously 
without it. 
 
;;TT-inverses 
(forall (?x ?y) 
        (and (<=> (p ?x ?y) (pi ?y ?x)) 
             (<=> (m ?x ?y) (mi ?y ?x)) 
             (<=> (o ?x ?y) (oi ?y ?x)) 
             (<=> (s ?x ?y) (si ?y ?x)) 
             (<=> (d ?x ?y) (di ?y ?x)) 
             (<=> (f ?x ?y) (fi ?y ?x)) ) 
        ) 
 
The various relations between these are often, following Allen, summed up in a transitivity 
table. This 13 x 13 array gives the set of possible relations that can hold between x and z 
when one relation holds between x and y and the second between y and z. We summarise 
the table here as a variadic relation  ttable on relations. The first two are the table 
coordinates, the rest are the possible entries at that point. This is expressed in the 
following second-order assertions, written here in pseudo-KIF notation: 
 
4.3.3 (forall (?r ?s ?e @l)(<=>  
  (ttable ?r ?s ?e @l)  
  (forall (?x ?y ?z)(=>(and (?r ?x ?y)(?s ?y ?z)) 
       (disjoin ?x ?z ?e @l) )) )) 
 
4.3.4 (defrelation disjoin (?x ?z ?e @l) :=  
   (or  (?e ?x ?y) 
    (disjoin ?x ?y @l)) 
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 ) 
 
Unlike the Dedekind axiom discussed earlier, however, these are not essentially second-
order quantifiers. These ‘second-order’ variables are really only schematic placeholders for 
first-order relations: indeed, for our purposes, they need only refer to the twenty-six 
realtions in our current list. These axioms can therefore be quite reasonably transcribed 
into KIF by using the ‘holds’ relation between a relation and its arguments: 
 
;;table-TT 
(defrelation ttable (?r ?s ?e @l) := 
         (forall (?x ?y ?z) (=> (and (holds ?r ?x ?y)  
                                     (holds ?s ?y ?z)) 
                                (disjoin ?x ?z ?e @l) )) )) 
 
;;disjoin-TT 
(defrelation disjoin (?x ?z ?e @l) := 
             (or (holds ?e ?x ?y) 
                 (disjoin ?x ?y @l)))) 
 
 
 The table is then summarised in the following rather long conjunction: 
 
(and  (ttable p p p) 
      (ttable p m p) 
      (ttable p o p) 
      (ttable p fi p) 
      (ttable p di p) 
      (ttable p si p) 
      (ttable p s p) 
      (ttable m p p) 
      (ttable m m p) 
      (ttable m o p) 
      (ttable m fi p) 
      (ttable m di p) 
      (ttable o p p) 
      (ttable o m p) 
      (ttable fi p p) 
      (ttable p d p m o s d) 
      (ttable p d p m o s d) 
      (ttable p f p m o s d) 
      (ttable p oi p m o s d) 
      (ttable p mi p m o s d) 
      (ttable m si m) 
      (ttable m s m) 
      (ttable m d o s d) 
      (ttable m f o s d) 
      (ttable m oi o s d) 
      (ttable o d o s d) 
      (ttable o d o s d) 
      (ttable fi d o s d) 
      (ttable m mi fi = f) 
      (ttable o p p) 
      (ttable o m p) 
      (ttable o o p m o) 
      (ttable o fi p m o) 
      (ttable o di p o m fi di) 
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      (ttable o si m fi di) 
      (ttable o s o) 
      (ttable fi s o) 
      (ttable o oi o fi di si = s d f oi) 
      (ttable fi m m) 
      (ttable fi o o) 
      (ttable fi di di) 
      (ttable fi si di) 
      (ttable di fi di) 
      (ttable di di di) 
      (ttable di si di) 
      (ttable si fi di) 
      (ttable si di di) 
      (ttable fi f f = fi) 
      (ttable di p p m o fi di) 
      (ttable si p p m o fi di) 
      (ttable si s si = s) 
      (ttable s p p) 
      (ttable s m p) 
      (ttable d p p) 
      (ttable d m p) 
      (ttable f p p) 
      (ttable s o p m o) 
      (ttable s fi p m o) 
      (ttable s di p m o fi di) 
      (ttable s si si = s) 
      (ttable d o p m o s d) 
      (ttable d fi p m o s d) 
      (ttable f m m) 
      (ttable f o o s d) 
      (ttable f fi f = fi) 
      (ttable oi p p m o fi di) 
      (ttable mi p p m o fi di) 
      (ttable oi m o fi di) 
      (ttable oi o o fi di si = s d f oi) 
      (ttable mi m si = s) 
      ) 
 
 
(This ordering tries to illustrate the natural grouping of entries in the table.  Some entries 
are omitted: in particular, those involving equality follow by ordinary logical principles; 
some entries provide no information; and the entire table is symmetric so only half of it is 
necessary.)  More discussion of the topological structure of the table can be found in 
(Freska 1992), who develops a very intuitive iconic  notation.  
 
The table can be thought of as defining an algebra on subsets of the set AR = 
{p,m,o,s,d,f,fi,di,si,oi,mi,pi,=} of thirteen relation names,. Temporal reasoning 
can then be performed by computing multiplication in this algebra, where an empty string 
indicates a contradiction.   This has been a very influential technique for interval 
reasoning. Vilain and Kautz (1986) have shown that computing closure in this algebra is 
an NP-complete problem in general, although useful polynomial time algorithms have been 
developed for special cases (Vilain, Kautz & Van Beek 1989) 
 
This algebraic approach to interval reasoning is rather different in spirit than the simple 
“reduction to endpoint” definitions given below. For example, consider the relationship 
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between two intervals ?i and ?j  which is that the first begins before the second ends, ie 
(before (beginof ?i)(endof ?j)) . To express this in the algebraic style one must 
consider which of the thirteen relationships is consistent with this arrangement and list 
them all explicitly.  The answer is  {p, m, o, s, d, =, fi, si, fi, di, oi},  ie all 
eleven of these are consistent with that constraint on the endpoints. This awkwardness 
of the disjunctive-list notation is due to the fact that each particular interval relation 
commits itself to the relative positions of both endpoints, so a lack of commitment can 
only be expressed by a disjunction.  
 
Several entries recur in the table several times: the sequences (p m o fi di) and (o s 
d f = fi di si oi) for example. Freska notes that several of these have natural 
interpretations as weaker constraints on interval endpoints. For example, (p m o fi di) 
is the relation of beginning earlier than, with no constraint on the relations between the 
ends of the intervals; while the second disjunction is the relation  ncdf  in section 4.1.   
The thirteen relations can be defined from these by conjunction rather than disjunction.  
(For example, if we also define exact to mean that the two intervals’ endpoints are 
somewhere exactly aligned (this is (m s f = si fi mi)), then meets is  
beginsearlierthan and not ncdf and exact.  ) This suggests the possibility of finding such a 
set of weaker relations which is also closed under transitivity, which would greatly simplify 
the task of computing transitive closure.  
 
One might have hoped for a simpler summary of the relations between such an intuitively 
acceptable set of temporal relationships.  They can be appropriately defined in simpler 
theories.  A theory  needs to provide enough axioms to conclude that these relations are 
an exhaustive and exclusive set of interval relations, and to derive the transitivity table. 
We give two ways  of doing this.  
 
4.4 Thirteen relations in terms of meets 
 
These definitions use one basic formal trick, which is to force two intervals to have a 
common endpoint by hypothesising that a third interval exists which meets them both, or 
which they both meet.  This is rather like the familiar juggling feat of holding boxes in the 
air by clamping them between two boxes held in the hands. 
 
The intuitive content of these definitions is probably best shown by drawing the linear 
patterns of intervals named in the quantifiers. Overlaps is the most complicated case. 
 
;;precedes-IM 
(defrelation precedes (?i ?j) := 
             (exists (?k) (meets ?i ?k ?j))) 
 
;;overlaps-IM 
(defrelation overlaps (?i ?j) := 
                  (exists (?k ?m ?n ?o ?p) 
                     (and (meets ?k ?m ?n ?o ?p) 
                          (meets ?m ?j ?p) 
                          (meets ?k ?i ?o) ))) 
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;;starts-IM 
(defrelation starts (?i ?j) := 
             (exists (?k ?m ?n) 
                     (and (meets ?k ?i ?m ?n) 
                          (meets ?k ?j ?n) ))) 
 
;;during-IM 
(defrelation during (?i ?j) := 
             (exists (?k ?m ?n ?o) 
                     (and (meets ?k ?m ?i ?n ?o) 
                          (meets ?k ?j ?o) ))) 
 
 
 
;;finishes-IM 
(defrelation finishes ( ?i ?j) := 
             (exists (?k ?m ?n) 
                     (and (meets ?k ?m ?i ?n) 
                          (meets ?k ?j ?n) ))) 
 
 
Allen & Hayes (1987) show how the entire 13 x 13 transitivity table of these relations 
and their inverses can be derived within the theory of ‘meeting’ described earlier plus 
these definitions. 
 
 
5. Points and Intervals 
 
In this section we consider putting together the ideas of point and interval into combined 
theories. 
 
5.1 Thirteen relations in terms of endpoints 
 
The thirteen relations can be defined directly, following their intuitive meanings, by using 
the point ordering relation before applied to the endpoints of the intervals. To do this we 
introduce two functions beginof and endof from intervals to points.  The inverse 
function between is also useful. These axioms and definitions, added to the theory 
LINEAR-POINT, constitute a theory we will call ENDPOINTS: 
 
;;beginof-endof-EP 
(forall (?i)(=> (timeinterval ?i) 
                       (and (timepoint (beginof ?i) (endof ?i)) 
                            (before (beginof ?i) (endof ?i)) 
                       ) 
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        )) 
 
;;between-EP 
(forall (?p ?q)(<=> (before ?p ?q) 
                   (and (= ?p (beginof (between ?p ?q))) 
                        (= ?q (endof (between ?p ?q))))))) 
 
;;precedes-EP 
(defrelation precedes (?i ?j):= 
             (and (timeinterval ?i ?j) 
                  (before (endof ?i) (beginof ?j)))) 
 
;;overlaps-EP 
(defrelation overlaps (?i ?j):= 
             (and (timeinterval ?i ?j) 
                  (before (beginof ?i) (beginof ?j) (endof i)))) 
 
;;starts-EP 
(defrelation starts (?i ?j):= 
         (and (timeinterval ?i ?j) 
              (= (beginof ?i) (beginof ?j)) 
              (before (endof ?i) (endof ?j)) )) 
;; 
;;during-EP 
(defrelation during (?i ?j):= 
          (and (timeinterval ?i ?j) 
               (before (beginof ?j)  
                       (beginof ?i)  
                       (endof ?i)  
                       (endof ?j)) )) 
 
;;finishes-EP 
(defrelation finishes (?i ?j):= 
         (and (timeinterval ?i ?j) 
              (before (beginof ?j) (beginof ?i)) 
              (= (endof ?i) (endof ?j)) )) 
 
The entries in the  transitivity table can be straightforwardly derived within ENDPOINTS.  
However, we can also take these axioms, add them to the theory INTERVAL-MEETING, and 
regard  between-EP as a definition of before; and then all the axioms of LINEAR-POINT 
are derivable. So this theory provides a kind of bridge between the point-ordering view of 
time and the interval-meeting view, from the glass continuum perspective. 
 
Notice that   beginof-endof-EP  means that there cannot be a single-point interval in 
this theory. If we allowed single-point intervals then the transitivity table would no longer 
be derivable. For example, it would then be possible to have three intervals such that I 
meets J meets K and I meets K.  Moreover, one interval could both meet and start 
another.  Later we will consider a variation in which this restriction is removed, and which 
reconciles these apparently unintuitive consequences. 
 
 
Models 
 
All models of LP , including the nonstandard ones, extend immediately to models of EP by 
interpreting  intervals in any of the three ways mentioned in section 4.2 above.  These 
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axioms fit most naturally into the glass continuum, since they make no distinction 
between open and closed timeintervals; but as noted there, it is possible to interpret 
timeintervals as half-closed intervals in the point continuum.  
 
Some care is necessary in considering models over the rationals. We cannot take the 
universe to be all rational intervals, since there are rational intervals with no rational 
endpoints. The universe of models of EP must be made up from intervals with rational 
endpoints. Perhaps not surprisingly, therefore, when we insist that intervals are attached 
to their ends, we can only have countably many of them. 
 
 
 
5.2   Open and closed intervals: the point continuum 
 
Although the thirteen relations can be interpreted in the point continuum, difficulties arise 
if we combine the  mathematical intuitions from real analysis with these axioms.  For 
example, Galton (1990) argues that Allen’s axiom for ‘property negation’, when applied 
to a smoothly moving body, seem to imply that it is never at any position (since it is 
never at any position for a whole subinterval,  (pnot (at ?x)) is always true 
throughout any interval).  This argument however assumes that  “interval”means 
mathematical interval, and indeed Galton goes on to develop a variation on Allen’s theory 
which is as directly interpretable in the point continuum as Allen’s is in the glass 
continuum. We give a variation here which is equally expressive but somewhat less 
complex. 
 
Galton distinguishes two kinds of proposition: a state of position  and a state of motion. 
Paradigmatic examples are respectively, a ball being at rest and a ball being in motion.  
Galton however is careful to distinguish being at rest from having zero velocity. For 
example, a ball tossed in the air has zero velocity at the single timepoint when it reaches 
the top of its parabola, but it is not at rest there; this is a state of motion but not of 
position. 
 
Galton gives many axioms relating states of position and motion, using a complicated 
variation of the ‘holds’ notation discussed in section 2. However, since states of position 
are those things that can hold true during a closed interval, while states of motion must 
hold during open intervals, the two classes of proposition must be exclusive, and to 
distinguish them it is sufficient to distinguish the kinds of interval during which they hold. 
If we further think of an interval as consisting of the points it contains, we can easily 
define an equivalent language which has as primitive just the notion of holds at a point.  
As described earlier, with this simple interpretation  ‘holds’ can be transparently removed 
from the language, and such axioms as 
 
** (<=> (holds-at (not ?p) ?i) (not (holds-at ?p ?i)) ) 
 
become tautologous.  
 
The distinction between states of motion and position can then be reinterpreted as 
differences between different kinds of relation. Some can only be relativised to open 
intervals, others only to closed. For example, the property of moving is taken to be a 
relation between an object and a closed interval, while resting becomes a relation to an 
open interval. When something starts to move, the two intervals of its resting and 
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moving meet, but the latter contains the meeting point, where the motion has begun but 
the velocity is zero. For the old example of the light, either one or the other of being lit 
and not being lit has to be a state of motion; or else, perhaps more plausibly, they can 
both be states of rest, but then the single meetingpoint is where a special state of 
motion predicate –  goingout or comingon  , or perhaps simply changingstate – is true. 
 
There are several ways to obtain a theory for open and closed intervals.  One method is 
to define intervals as sets of points, and use set-theoretic comprehension principles to 
establish that appropriate intervals exist. We do not develop this standard mathematical 
approach here, but give selfcontained axiom systems which can be connected to set 
theory later, if required. There are in any case some complications in thinking of intervals 
literally as sets of points. 
 
The most straightforward way is probably to talk of endpoints, as in the theory EP. I will 
use the relation  in  between a point and a containing interval (this is not the same as 
during) and open and closed as predicative relations on intervals.   
 
;;PC-in-syntax 
(forall (?x ?y)(=> (in ?x ?y) 
                   (and (timepoint ?x) 
                        (timeinterval ?y)) )) 
 
;;open-close-in-PC 
(forall (?i)(=> (timeinterval ?i)  
        (or (and (open ?i) 
                 (not (closed ?i)) 
                 (forall (?p)(<=> (in ?p ?i) 
                                  (before (beginof ?i) ?p (endof ?i)) 
                 ))  ) 
            (and (closed ?i) 
                 (not (open ?i)) 
                 (forall (?p)(<=> (in ?p ?i) 
                                  (bbefore (beginof ?i) ?p (endof ?i)) 
                 ))  )))) 
 
So far nothing establishes that intervals actually exist, but we can assert this directly. 
 
;;begin-end-PC-1 
(forall (?p ?q)(=> (timepoint ?p ?q) 
        (or  (before ?q ?p) 
             (exists (?i) 
                     (and (timeinterval ?i) 
                          (closed ?i) 
                          (= (beginof ?i) ?p) 
                          (= (endof ?i) ?q)    
                     ) 
              )) 
        ) 
) 
 
 
The rather awkward disjunction here is to allow the case where ?p and ?q are the same 
point. The similar axiom for open intervals reads more naturally: 
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;;begin-end-PC-2 
(forall (?p ?q)(=> (timepoint ?p ?q) 
        (<=>  (before ?p ?q) 
              (exists (?i) 
                      (and (timeinterval ?i) 
                           (open ?i) 
                           (= (beginof ?i) ?p) 
                           (= (endof ?i) ?q)    
                       ) 
              )) 
        ) 
) 
 
The  skolem form of this axiom provides the useful function  between from a pair of 
points to the open interval between them. 
 
;;between-PC 
(defunction between  
(forall (?p ?q)(=> (timepoint ?p ?q) 
        (<=> (bbefore ?p ?q) 
             (and (timeinterval (between ?p ?q)) 
                  (= ?p (beginof (between ?p ?q)) 
                  (= ?q (endof (between ?p ?q))  )))))) 
) 
 
The biconditional here makes the very strong assumption that every pair of points defines 
an interval and vice versa. Weaker “bindings” between interval and points could also be 
considered, for example by replacing this by a simple implication, or restricting the 
quantifier to a special subset of ‘endpoints’. For example, one might want to consider a 
dense theory of points but only allow a discrete universe of intervals, so that some points 
had no interval between them. I will not explore such ideas in detail, however. 
 
Every open interval has a closed interval with the same endpoints.  The skolem form of 
this statement provides the function closure. This axiom would be trivial in the glass 
continuum, but needs to be explicitly stated here: 
 
;;closure-PC 
(deffunction closure 
(forall (?i)(=> (timeinterval ?i) 
        (and  (timeinterval (closure ?i)) 
              (closed (closure ?i)) 
              (= (beginof ?i) (beginof (closure ?i))) 
              (= (endof ?i) (endof (closure ?i))) 
        ))) 
 
) 
 
It follows that  an interval is closed just when it is equal to its own closure, as expected. 
 
A moment is an interval which is as short as possible, ie has no points inside it : 
 
;;moment-PC 
(defrelation moment (?i) :=  
       (forall (?p)(<=> (in ?p ?i)(or (= ?p (beginof ?i)) 
                                     (= ?p (endof ?i)) )))) 
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The definitions of the thirteen relations used in 4.5 above now need to be reconsidered. 
(As they were inspired by the glass continuum, this is perhaps not surprising.) Only a 
closed interval can meet an open one, and vice versa; and  a subinterval can start or finish 
only an interval of the same kind. The concept of being the same kind as, ie  also closed 
or also open,  or  acoao, will be useful here: 
 
;;acoao-PC 
(defrelation acoao (?i ?j)(=> (timeinterval ?i ?j) 
             (or  (and (open ?i) (open ?j)) 
                  (and (closed ?i) (closed ?j)) 
                  ))) 
 
 
Then the three cases where endpoints are supposed to be precisely aligned can be 
rewritten thus: 
 
;;meets-PC 
(defrelation meets (?i ?j) := 
          (=> (timeinterval ?i ?j) 
              (and (not (acoao ?i ?j)) 
                  (= (endof ?i) (beginof ?j)) ))) 
 
;;starts-PC 
(defrelation starts (?i ?j) := 
         (=> (timeinterval ?i ?j)  
             (and  (acoao ?i ?j) 
                   (= (beginof ?i) (beginof ?j)) 
                   (before (endof ?i) (endof ?j)) 
                   ))) 
 
;;finishes-PC 
(defrelation finishes (?i ?j) := 
        (=> (timeinterval ?i ?j) 
            (and  (acoao ?i ?j) 
                  (before (beginof ?j) (beginof ?i)) 
                  (= (endof ?i) (endof ?j)) ))) 
 
The other Allen relations are defined just as in ENDPOINT. 
 
If these axioms are added to the basic point-order theory LINEAR-POINT, the resulting 
theory is a sketch of the usual mathematical account of the rational line or the real 
continuum.  It does not have continuity assumptions, however, since these are essentially 
not first-order. Whether they are needed is an interesting, and ultimately empirircal 
question. If this theory is being used in a scientific or engineering domain then certain 
consequences of continuity are certainly useful, and may be essential: notably, for 
example, the ijntermediate-value theorem and the existence of solutions to certain 
classes of equations. However, these can often be stated directly. In any case, I do not 
here consider this issue (which goes beyond the narrow question of temporal 
effectiveness) in detail.  
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Two open intervals cannot meet, so if two open intervals  (between a b)and (between 
b c) share an endpoint, then there is a single-point closed interval just separating them, 
so that   (between a b) meets [b,b] meets (between b c).These single-point 
intervals are the moments.  
 
Moments are closed, and every closed single-point interval is a moment, as we would 
expect. In stark contrast to the axioms in 5.1, these single-point moments are 
everywhere: by between-end-PC-1, every point occupies one.  The biconditional in 
between-end-PC-2 ensures that a single-point open interval is impossible. 
 
The chief utility of moments until now has been to state a discreteness condition. But 
because a moment now can consist of nothing but a point, axioms which assert that 
intervals have adjacent moments will be true even in the real line, thus failing completely 
to guarantee an underlying discrete structure of seperate time-ticks. We cannot insist 
that a moment meet another moment since this is provably impossible; being both closed, 
their meeting is excluded by the acoao condition.  The correct way to state density or 
discreteness is in terms of points rather than intervals, since the intervals in this theory 
are defined by the locations of their endpoints. We can simply add the appropriate 
definitions in the extended theories DENSE- or DISCRETE- LINEAR-POINT. 
 
Models 
 
These axioms have a curious consequence in a discrete model of time, where there are 
points p,q ordered by before but with no points between them; therefore there are 
open timeintervals (between p q) which contain no timepoints at all. The discrete 
timeline consists of these empty open intervals interleaved with single-point moments 
containing the timepoints. This rather strange (although consistent) picture arises from 
combining two rather different intuitions: the universal quantifier in 5.2.6 is suggested by 
a vision of smooth continuity, which the discreteness axiom explicitly denies. 
 
 This would be a contradiction in a set-theoretic model, where these would all be the 
empty set and hence be identical, forcing time to be circular in a particularly pathological 
fashion. However, a set-theoretic development would not need these axioms; and we do 
not need to identify these empty moments, since they are distinguishable by their 
endpoints ( which, being open, they do not contain). For example, one discrete model of 
these axioms is provided by the integers where timepoint is true of the even integers, a 
timeinterval is a connected sequence of integers which is open when its ends are odd 
and closed when they are even, and meets is simply adjacency. The ‘empty’ open 
intervals are then the odd integers.  
 
The density axiom produces more intuitive results, and this extension of the theory has 
the usual models. With the density assumption, a moment must contain only a single 
point which is both its end and its beginning. 
 
Galton’s distinction between states of motion and rest is now simply the distinction 
between the kind of interval they can be said to hold during. They both hold-in an 
interval just when they hold at all the points in the interval; but if the interval is closed, 
then they are a state of motion, and if open, a state of rest. Things that hold-in single-
point moments (as opposed to holding at a point) must therefore be states of motion. 
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5.3  The Vector Continuum:  placing points in glass 
 
The different intuitions about the continuum give rise to very different axioms. However, 
it is possible to combine some of the most useful features of both of them into a single 
consistent framework. 
 
First, we simply add the notion of a point to the description of the glass continuum given 
in 4.2, ie the theory INTERVAL-MEETING.  To preserve the intuition, however, the basic 
relation between points and intervals is not that of containment – the in relation of 5.1 – 
but that of a meeting-point: points are the places where intervals meet. We will express 
this by a three-way relation  meets-at between two meeting intervals and a point. 
 
The most natural relation between interval and point is expressed here by the relation 
meets-at which is true when a point is the meeting-place of two intervals: 
 
;;VC-syntax-meets-at 
(forall (?x ?y ?z)(=>(meets-at ?x ?y ?z) 
                     (and (timeinterval ?x ?z) (timepoint ?y)))) 
 
;;meets-at-VC 
(defrelation meets-at (?i ?p ?j) := 
               (= ?p (endof ?i) (beginof ?j))) 
 
It follows therefore that (meets ?i ?j) if and only if (exists (?p)(meets ?i ?p 
?j)). 
 
If we now define the timepoint ordering : 
 
 (defrelation before (?p ?q) :=  
          (exists (?i ?j ?k) 
               (and (meets-at ?i ?p ?j)(meets-at ?j ?q ?k)))  ) 
 
then its properties follow from the axioms of INTERVAL-MEETING: that is, LP can be 
derived within IM+these three axioms. (Notice again the importance of the infinity 
assumption , which is now necessary to establish that every interval has endpoints. ) This 
theory, like ENDPOINTS, therefore provides a bridge between the point and interval ways 
of conceptualising the glass continuum.  To emphasise the point; if we define   beginof 
and  endof correctly, the definitions of the thirteen relations  in the style of the  interval 
theory IM, or that of the endpoint theory EP  become provably equivalent: 
 
(defrelation beginof (?i) := (exists (?j) 
                   (meets-at ?j (beginof ?i) ?i))) 
 
(defrelation endof (?i) := (exists (?j) 
                   (meets-at ?i (endof ?i) ?j))) 
 
The resulting theory is still openminded about density or discreteness, and can be pushed 
in either direction by adding suitable extension axioms, eg by extending LP or IM. 
 
A more interesting alternative, however, allows the idea of intervals with a direction.  
These will be useful when talking of durations, since it is natural there to think of a 
negative duration as a ‘debt’ of time; and it results in a very elegant simplification of 



 46 

many of the axioms, overcoming some artificial restrictions which have been necessary in 
order to make the axioms have the needed conclusions.   
 
Consider the axiom beginof-endof-EP: 
 
(forall (?i)(=> (timeinterval ?i) 
                       (and (timepoint (beginof ?i) (endof ?i)) 
                            (before (beginof ?i) (endof ?i)) 
                       ) 
        )) 
 
and consider the effect of weakening it to remove the restriction that the beginning of an 
interval is before its end.: 
 
(forall (?i)(=> (timeinterval ?i) 
                (timepoint (beginof ?i) (endof ?i)) 
        )) 
 
This allows intervals with are ‘pointed backwards’ as well as interval with idenical 
beginning and endings, ie single-point intervals.  The lack of single-point intervals is a 
distinct weakness of the ‘glass continuum’ theories such as ENDPOINTS, compared to the 
POINT-CONTINUUM, but this suggests an alternative way to incorporate them.   
 
;;moment-VC 
(forall (?x) (<=> (moment ?x) 
                  (= (beginof ?x)(endof ?x)))) 
 
Here then, an interval is defined by any two points. If the beginning is before the end, 
then we will say that the interval is forward, and given any interval we will have a 
function back which ‘reflects’ it.  
 
;;forwards-VC 
(defrelation forwards (?i) := (before (beginof ?i)(endof ?i))) 
 
 
;;back-VC 
(deffunction back (?i) = (between (endof ?i)(beginof ?i))) 
 
That (back (back ?x)) = ?x then follows from the definition of between in 
ENDPOINTS. 
 
Actually this ‘mirror’ analogy is somewhat misleading, since a backward interval should 
not be thought of as going backwards in time - time itself does not move, of course - but 
rather as a debt of time or an amount owing. For example, a sequence of meeting 
intervals represents a longer interval which is their sum; to include a backward interval in 
such a  
sequence would simply be to diminish the total time it represented: 
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This is rather like observing that some event is earlier than expected.  
 
Similarly, a single-point interval - a moment - added to another interval should not affect 
its duration at all. There seems now, in fact, to be little to distinguish a moment from a 
timepoint, other than our insistence that the two categories are disjoint.  The motivation 
for such an insistence comes from the idea that intervals, but not points, are the things 
during which propositions are true or when events happen. This intuition was fundamental 
to Allen’s development and has motivated others; and it was precisely this (considered 
more as a bug than a feature) which led Galton to explicitly deny the glass continuum 
intuition and return to the point continuum.  There seems to be little more than a point 
when the ball is motionless at the top of its parabola, for example.  
 
This all suggests that we take the unusual step of allowing a moment to be both an 
interval and a point.  The categories are disjoint everwhere else, but here they overlap: 
 
;;VC-moment 
(forall (?x) (<=> (moment ?x) 
                  (and (timepoint ?x) 
                     (timeinterval ?x)))) 
 
Moments now have some interesting properties. Following the axioms in INTERVAL-
MEETING and the definitions in LINEAR-POINT, it is easy to show that a moment meets 
itself: indeed, that it meets itself at itself. This seems extremely unintuitive until we 
observe that any interval meets its own back-reflection. We can think of a moment not as 
the limiting case of two copies of itself placed one before the other - which is clearly 
impossible - but rather as the limiting case of an interval meeting its own reflection: 

i i
i

-i

i

??   meets(i,i)      ?? meets(i, -i)  &  i= -i
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It now also follows that if two (non-momentary) intervals meet at a moment, then they 
also meet. This means that a moment can be placed ‘between’ two meeting intervals 
without blocking their meeting, in marked contrast to the situation in the point 
continuum.   
 
In many ways this seems more natural. It allows us to describe a pattern of meeting 
intervals without being overly concerned about whether or not the meeting-places are 
worthy of mention. Deciding that a meeting-place is a moment (and hence that 
something can be true there but nowhere else, as in the tossed ball) would not require 
massive updating of a set of assertions, rewriting all the ‘meets’ to be ‘precedes’, re-
evaluating the open/closed status of intervals, and so forth, but can be transparently 
added, and is inconsistent only with an explicit denial of its status as momentary.. 
 
This provides the most satisfying framework for describing the glass continuum.  A 
moment now is a both a timepoint and a timeinterval. Since it meets other intervals, it 
can also take part in the other interval relationships defined in INTERVAL-MEETING.   It is 
(when considered as a point) both the beginof and endof itself (when considered as an 
interval).  In some ways therefore it acts similarly to the one-point intervals in the point 
continuum. For example, we could distinguish the interval between two such point-
moments from the result of adding them to its ends, and regard this addition as 
something like the operation of closure in the point continuum. But many intervals need 
not end in such moments, so ‘closure’ might be rarely possible: and in any case, these 
‘closed’ intervals do not behave any differently than their ‘interiors’ in how they relate to 
their neighbors. Points here are still not as substantial as they are in the point continuum, 
even when given the status of being intervals. 
 
This also fits quite well with the intuition of an interval as giving information about the 
exact time of a timepoint. Since a moment is a point, it has no other points within it, 
hence it is an interval which identifies a point as precisely as possible. It represents the 
limits of our abilities to measure exactly when something happens.  In the dense case, this 
would seem naturally to be the point itself. 
 
5.3.1  Approximate-meeting 
 
Another way to motivate this way of describing time comes from the following essentially 
model-theoretic argument. Return for the present to the older idea of moment as a 
shortest possible interval, but not a point, as described in the theory INTERVAL-MEETING.  
Let us say that two intervals approximately meet if they are separated only by a moment: 
 
;;A 
(defrelation ameets (?i ?j):= 
   (exists (?k) 
    (and (moment ?k)(meets ?i ?k ?j)) ) ) 
 
 
and then allow this as one way of meeting: 
 
;;B 
(defrelation mmeets (?i ?j):= 
   (or (ameets ?i ?j)(meets ?i ?j)) )  
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 (The name should suggest a momentary hesitation)  Now, if we assume that two 
moments cannot meet: 
 
;;C 
(forall (?i ?j) (=> 
  (and (moment ?i)(moment ?j))  
   (not (meets ?i ?j)) )) 
) 
 
then mmeets satisfies the axioms of INTERVAL-MEETING (IM) . That is, if we rewrite the 
IM axioms with mmeets in place of meets, the resulting theory – call it AIM – is deducible 
within IM + A,B,C.  (Hayes & Allen 1991) 
 
(The reason for the no-meeting requirement can be seen by considering the ‘place’ axiom 
with ameets instead of meets. The assumptions allow this to occur: 

                                     

i

j

k

m

 
 
But now the intervals j and m do not even approximately meet, since there are two 
moments between them.  If tiny errors are allowed to add up, they become large enough 
to notice.) 
 
This means that meets could consistently have been interpreted this way all along 
(assuming still that moments cannot meet). Any model of IM + A,B,C is automatically a 
model for AIM; and any model of AIM  is also one of IM where meets is sometimes 
interpreted as ameets.  Therefore we can merge the relations meets and  ameets into a 
single relation without confusion, retaining all truths.  If we call this combined relation 
meets, then this amounts to saying that some meetings can be at moments without 
violating the theory. The point-moment models described in section 4.2, in which a 
subset of points in the model were singled out as standing for moments, were indeed 
such interpretations, with the ‘isolation’ of the moment-points corresponding exactly to 
the no-meeting axiom C.  The effect of this merging can be described as identifying 
moments with points.  
 
It would be nice if we could simply conjoin all the axioms in INTERVAL-MEETING and 
ENDPOINTS, but it is now necessary to adapt some of the earlier axioms slightly, since 
point-moments will no longer serve to establish a space between meetingpoints: 
 
;;beginof-endof-VC (generalises EP) 
(forall (?i)(=> (timeinterval ?i) 
                (and (timepoint (beginof ?i) (endof ?i))))) 
 
;;between-VC (generalises EP) 
(forall (?p ?q) (and (= ?p (beginof (between ?p ?q))) 
                     (= ?q (endof (between ?p ?q)))))) 
 
;;plus-VC 
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(deffunction plus 
(forall (?i ?j)(=>(meets ?i ?j) 
                  (= (plus ?i ?j) 
                     (between (beginof ?i)(endof ?j))))) 
) 
 
The axioms of INTERVAL-MEETING adapt quite well to the generalisation which allows 
backwards and pointlike intervals. For example, the ‘place’ axiom is still true even when 
some of the intervals mentioned are backwards: 

i

jk

m

 
 
 
The definitions of the Allen relations given in ENDPOINTS work here perfectly well. The 
definitions in INTERVAL-MEETING, however, need to be restricted to forward intervals, or 
they fail to make the relevant distinctions. Here, the mere existence of an interval is not 
sufficient to ensure the past-to-future ordering of its endpoints. 
 
 
6.  Durations 
 
A duration is a property of an interval, or equivalently of a pair of points defining the ends 
of the interval. Since the duration of a point (including a point-moment) is zero, we can 
here be somewhat more careless about the distinctions between different views of the 
continuum, and between open and closed intervals. Any theory of duration ought to apply 
to both views equally well; and, except where noted, these axioms can be added to any of 
the earlier theories. The conclusions can often only be reached in one of the more 
comprehensive theories, however.  The distinction between dense and discrete time is 
often important since in dense time, a moment has no duration, but in discrete time it 
must have some. 
 
6.1 Basic properties of durations 
 
It would be acceptable to assume immediately that durations were, say, real numbers; but 
in the spirit of the earlier sections I will develop the theory with the minimal assumptions 
necessary.  Whatever durations are, some things seem clear. Durations can be compared; 
durations can be added together (since the duration of two meeting intervals is the sum 
of their durations); there is a zero duration (which is the duration of a point); and finally, 
clocks measure duration by counting, so it must be possible to multiply durations by 
integers. These three basic assumptions are embodied in the constant zero,  the chained 
transitive relation less, and the functions add  and times  used in these axioms.  The 
type predicate is timeduration, and duration is a function from intervals to 
timedurations. 
 
;;DU-syntax 
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(and (predicative timeduration) 
     (forall (?x ?y)(and  
                (=> (exist (?z) (= ?z (mult ?x ?y))) 
                    (and (integer ?x) (timeduration ?y))) 
                (=> (exist (?z) (= ?z (add ?x ?y))) 
                    (timeduration ?x ?y)) 
                (timeduration zero)  )) 
 
 
;;mult-DU 
(deffunction mult 
(forall (?d ?n ?m) 
        (and 
         (= (mult 0 ?d) zero) 
         (= (mult 1 ?d) ?d) 
         (= (mult (+ ?n ?m) ?d)) 
            (add (mult ?n ?d) (mult ?m ?d))) 
        )) 
) 
 
;;add-DU 
(deffunction add 
(forall (?d ?e @f) 
        (and (= (add zero ?d) ?d) 
             (= (add ?d ?e) (add ?e ?d)) 
             (= (add ?d (add ?e @f)) (add (add ?d ?e) @f)))) 
) 
 
Several different functions satisfy this axiom. Since in general there is no notion of a unit 
duration, addition cannot be defined recursively in terms of a successor function. 
 
 
;;less-DU 
(forall (?d ?e)(<=> (positive ?d)(less ?e (add ?d ?e)))) 
 
The relation positive cannot be defined purely in the duration theory, but requires the 
notion of a forward interval, which in turn is defined in terms of the basic before relation 
on timepoints. Without reference to before, times,and hence timedurations, are 
completely symmetric with regard to the direction of time. 
 
;;numberin-DU 
(deffunction numberin 
(forall  (?d ?e) 
         (=> 
          (exist (?n)(and (integer ?n) (= (mult ?n ?d) ?e))) 
          (= (mult (numberin ?d ?e) ?d) ?e))) 
) 
 
Numberin is a useful function when we can be sure that copies of one duration fit exactly 
the another. 
 
6.2 Intervals, points and durations 
 
The most basic facts about the duration of intervals is that they add up properly: 
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;;duration-DU-plusadd 
(forall (?i ?j) 
        (=> (meets ?i ?j) 
            (= (duration (plus ?i ?j)) 
               (add (duration ?i) (duration ?j)) )))) 
 
and that points have no duration: 
 
;;duration-DU-zeroduration 
(forall (?x)(<=> (timepoint ?x) (= (duration ?x) zero))) 
 
Examples of durations include 
 
;;DU-examples 
(and  (timeduration year) 
      (timeduration week) 
      (timeduration day) 
      (timeduration hour) 
      (timeduration minute) 
      (timeduration second) ) 
 
 
We might also want to insist that nontrivial moments cannot have zero duration. In VC, 
since moments are timepoints, this covers them. If not, however, the following  might 
seem a reasonable way to do it: 
 
??? (forall (?i:timeinterval)(=> (= (duration ?x) zero)  
      (moment ?i) )) 
 
but in simple discrete theories it is false, while in simple dense theories it says nothing , 
since moments do not exist.  A suitable axiom for general use talks about points: 
 
(forall (?p ?q)(<=>  
  (before ?p ?q)  
  (not (= (duration (between ?p ?q)) zero)) )) 
 
The biconditional guarantees that moments in ENDPOINTS have zero duration, for 
example, and that one-point closed intervals in the point-continuum theory also do. 
 
(One might wish to allow  non-pointlike intervals with zero duration, by weakening the 
biconditional in  duration-DU-zeroduration to a simple conditional. These things 
would complicate the description of clocks, however, so here we assume that they are 
impossible.) 
 
If time is totally ordered and we select a certain fixed starting timepoint, then any other 
point is uniquely defined by the duration of the interval between it and the start time. So 
timepoints can be identified  by durations: 
 
;;duration-DU-rigid 
(forall (?i ?j) 
        (=> (and (timeinterval ?i ?j) 
                 (= (beginof ?i) (beginof ?j)) 
                 (= (duration ?i) (duration ?j)) ) 
            (= (endof ?i) (endof ?j)) )) 
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Notice that this does not claim that the interval itself is uniquely identified, since open 
and closed intervals have the same duration in the point continuum. However, in theories 
where endpoints identify intervals this will of course suffice. Also, rigidity does not hold in 
branching time models, where the clock or calendar time of a timepoint fails to uniquely 
specify it since there are many alternative timelines all going at the same rate, as it were. 
A convenient variation on the rigidity axiom uses the function from, from a point and a 
duration to the point that much later: 
 
;;from-DU 
(deffunction from 
(forall (?p ?d) (= ?d (duration (between ?p (from ?d ?p))))) 
(forall (?p ?d)(=> (and (timepoint ?p)(timeduration ?d))  
                   (timepoint (from ?p ?d)))) 
) 
 
Backwards and reflected intervals have negative and negated durations: 
 
;;positive-DU 
(defrelation positive 
(forall (?p ?q) 
        (<=> (before ?p ?q) 
             (positive (duration (between ?p ?q))) )) 
 
;;DU-back 
(forall (?i)(= zero (add (duration ?i)(duration (back ?i))))) 
 
Some other useful functions include a function which totals a sequence of durations 
 
;;total-DU 
(deffunction total 
(forall (?d @s) 
        (and  (= (total ?d) ?d) 
              (= (total ?d @s) 
                 (add ?d (total @s)) ))) 
) 
 
and one that forms a sequence of the durations of a sequence of intervals, a kind of 
duration-on-sequences function: 
 
;;dduration-DU 
(deffunction  dduration  
(forall (?x @l)(=> (timeinterval ?x) 
                   (and (= duration ?x)(dduration ?x)) 
                        (= (dduration ?x @l) 
                        (listof (duration ?x) (dduration @l))))))) 
 
6.3  Simple Clocks 
 
A simple clock is characterised by a start, which is a timepoint, and a beat, which is  a 
duration. It works by counting the number of beats between its start time and the time 
being measured.  A clock makes a continuous timeline seem discrete by mapping every 
time to a clocktick. 
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;;simpleclock-CL 
(forall (?c) (=>(simpleclock ?c) (and (duration (beat ?c)) 
                                 (timepoint (starttime ?c))))) 
 
 
;;clocktick-CL 
(defrelation clocktick (?p ?c) := 
            (exists (?n)(and (integer ?n) 
                             (= (duration (between (starttime ?c) ?p)) 
                                (mult ?n (beat ?c)) )))) 
hence 
 
 (forall (?n ?c) 
 (clocktick (from (times ?n (beat ?c)) (starttime ?c)) ?c)) 
 
Since intervals can be backwards, a clock ‘tells’ the time even before its starttime, but 
such clocktimes are negative. 
 
A (simple) clock time is the time of a point as measured by the clock, which is equal to 
the time of the immediately preceding clocktick: 
 
;;simpleclocktime-CL 
(defunction simpleclocktime (?p ?c) 
  (and  (integer (simpleclocktime ?p ?c)) 
        (less (mult (simpleclocktime ?p ?c) (beat ?c)) 
              (duration (between (starttime ?c) ?p))) 
        (not (less (mult (+ 1 (simpleclocktime ?p ?c)) (beat ?c)) 
                   (duration (between (starttime ?c) ?p))  )) 
        ) 
  ) 

                                         

.   .   .   .

n n+1

clocktime = n

n-10

 
 
 
This is the best we can do in general, since no clock can precisely locate every point in a 
dense timeline. In the discrete timelines, however, we might hope for more accuracy.   
 
Until now nothing has insisted that every moment of a discrete time must have the same 
duration, and indeed this would not be an appropriate claim to make in all theories 
(Situation-Calculus Time for example). However, now seems the right time to make this 
insistence. If we call this universal atomic amount of time  quantum,  then we have 
simply: 
 
(forall (?i) (<=> (moment ?i) 
             (= (duration ?i) quantum) )) 
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(In some continuous time theories, this means that  quantum is zero; in others, it says 
nothing since there are no moments.) 
 
We can reasonably expect that a clock-beat is some definite number of quanta, since 
when time is discrete there are no other times available for the clock to tick at. Indeed, if 
time is discrete then every duration is made of quanta: 
 
(forall (?d)(<=> (timeduration ?d) 
                (exists (?n) 
                        (= ?d (mult ?n quantum)) ) )) 
) 
 
and so it follows that a clock which could beat at the pulse-rate of the universe could 
indeed serve as a universal clock: 
 
;;quantumclock-Q 
(defrelation quantumclock (?c) := 
             (and (simpleclock ?c)(= (beat ?c) quantum)))) 
 
;;simpleclocktime-Q 
(forall (?c ?p) 
        (=>  (and (quantumclock ?c)(timepoint ?p)) 
             (= (mult (simpleclocktime ?p ?c) (beat ?c)) 
                (duration (between (starttime ?c) ?p)))))) 
 
Clocks are shift-invariant. This is easier to say in KIF than in English: 
 
;;CL-shift-invariance 
(forall (?c ?d) 
       (=> (and (= (beat ?c) (beat?d)) 
                (clocktick (starttime ?d) ?c)) 
           (forall (?p)(=>(timepoint ?p) 
                          (= (simpleclocktime ?p ?c) 
                             (+ (simpleclocktime ?p ?d) 
                                (simpleclocktime (starttime ?d) ?c))))) 
        )) 
 
 
Models 
 
Again, the semantic weight of these axioms is closely tied to the possible interpretations 
of the arithmetic terms that occur in them. If  integer  really refers only to integers, 
then all the nonstandard models of the timeline are ruled out and these axioms, when 
added to any of the earlier discrete-point theories, have only standard interpretations. 
However, nonstandard models of arithmetic adapt perfectly well to give nonstandard 
clocks, which might be called pink-rabbit clocks, since they beat forever and then keep on 
going. 
 
6.4  Calendars 
 
A calendar is a fixed system of timeintervals  and subintervals which divide the 
timeplenum into separate, identifiable pieces. A clock defines a calendar, but not all 
calendars can be defined that way, since a calendar need not be shift-invariant.  
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One way to think of a calendar is that it provides a way to make continuous time feel like 
discrete time at a certain scale. Thus we can talk of the next year, next month, next 
minute etc., and combine these together to refer to the third hour of the second day of 
the ninth week in 1995.   
 
A simple calendar is a clock with a finite sequence of durations which add up to its beat. 
Years divided into months and days divided into hours are examples. The beat of a simple 
calendar is called its scale., and the sequence of durations is its rhythm  For example, our 
conventional year-scale calendar’s rhythm is the sequence <31 days, 28 days, 31 days, 
30 days, 31 days, 30 days, 31 days, 31 days, 30 days, 31 days, 30 days, 31 days>.  
(This description insists that this is true even in a leap year, by the way: the 29th of 
February is always a shift-interval rather than a part of the calendar pattern.) 
 
;;simplecalendar-CL 
(defrelation simplecalendar 
(forall (?c) 
        (=> (simplecalendar ?c) 
            (and (simpleclock ?c) 
                 (= (beat ?c) (total (rhythm ?c)))))) 
) 
 
Since  KIF sequences are finite, such pathological examples as an oscillator approaching 
infinite frequency are ruled out. A rhythm defines a sequence of intervals between 
successive clockticks.  
 
;;dates-CL 
(deffunction dates 
(forall (?c ?p) (=> (and (simplecalendar ?c) (clocktick ?p ?c)) 
                    (and (= (beginof (first (dates ?c ?p)) ?p) 
                            (meets (dates ?c ?p)) 
                            (= (rhythm ?c) (dduration (dates ?c ?p))  ) 
                            ) 
                         ))) 
 
So the dates of a year are the months, and the dates of a day are the hours.  (This axiom 
should be rewritten for the point continuum, since the simple requirement of meeting 
may be too simplistic. It would lead for example to some hours being open and some 
closed. The proper thing to say there is that there is a moment between them.) 
 
 
6.5  Correcting and adjusting Clocks 
 
 
Clocks are prone to corrections of various kinds. A clock may be adjusted to be faster or 
slower, and clocks can be given deliberate hiccups as in leap years. Since leap years are 
regular, one could define a four-year clock to take them into account, but an alternative 
approach is to introduce the notion of a correction.  Since our definition of clock insists 
that they never change, we have to describe making a correction as shifting to a 
different, but usually closely related, clock.  For example, leap years and leap seconds re-
set the clock’s starttime slightly: 
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;;shift-CL 
(defrelation shift (?c ?d ?e) := 
(and (= (beat ?c) (beat ?d)) 
     (= ?e (duration (between (starttime ?c) (starttime ?d)))))) 
 
The shifting interval need not be measurable by the clock. It can be much smaller than 
the beat of the clock, as in usually the case with such minor corrections. 
 
Correcting the rate just amounts to re-setting the beat; but as this happens at a 
particular time, we usually implicitly consider the start-time also to have shifted to keep 
things straight. 
 
;;adjust-CL 
(defrelation adjust (?c ?d ?e ?p) := 
(and  (= (beat ?d) (add (beat ?c) ?e)) 
      (= (simpleclocktime ?p ?c)(simpleclocktime ?p ?d)) 
      ) 
) 
 
It follows that when a clock is adjusted, its starttime moves to the timepoint which it 
would have to have been in order to have arrived at this time at the new rate! 
 
Adjust makes a clock slower. The usefulness of allowing negative durations and backward 
intervals is shown by the fact that to make a clock faster is simply to make it slower by a 
negative amount. 
 
We can now consider an intuitive ‘clock’ to be a series of simple clocks, each one differing 
from the previous one by a correction of some kind happening at a point.  In the point 
continuum, the changes occurring during single-point closed intervals. In the glass 
continuum, the changes happen at the moments where the longer intervals meet each 
other.  Either way, time would be ambiguous only for a moment.   
 
Since this correcting might go on for ever, the sequence of clocks might be infinite, so 
cannot be described as a KIF sequence. It is simplest to define a function. Every clock has 
an associated set of points, called the resettimes, totally ordered by before.  If this is 
empty then the clock is simple clock.  We need the idea of the next reset time, provided 
by: 
 
;;nextone-CL 
(deffunction nextone  
  (and  (member (nextone ?p ?s) ?s) 
        (before ?p (nextone ?p ?s)) 
        (forall (?x) (=> (member ?x ?s) 
                         (not (before ?p ?x (nextone ?p ?s))))) 
  )) 
 
I will now slip into second-order syntax for a moment, in order to define this predicate on 
functions: 
 
;;clock-CL-1 
(forall (?c) 
        (<=> (clock ?c) 
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             (and (forall (?x) (=> (member ?x (resettimes ?c)) 
                                   (timepoint ?x) )) 
                  (forall (?p) 
                          (=> (member ?p (resettimes ?c)) 
                              (simpleclock (value ?c ?p)))) 
                   ))) 
 
and then of course the time as measured by a clock is the clocktime on the simple clock 
currently in use: 
 
;;clock-CL-2 
(forall (?p ?c) 
        (or 
         (and (empty (resettimes ?c)) 
              (simpleclock ?c) 
              (= (clocktime ?p ?c) (simpleclocktime ?p ?c))  ) 
         (forall (?q ) 
                 (<=> 
                  (and (member ?q (resettimes ?c)) 
                       (before ?q ?p (nextone ?q 
                                              (resettimes ?c)))) 
                  (= (clocktime ?p ?c)  
                     (simpleclocktime ?p (value ?c ?q)) ))))) 
 
 
6.6  Compound clocks and calendars 
 
Days are a particularly simple form of calendar in which the inner beats are themselves 
regular clockticks. It is worth giving this class a special name, since everything becomes 
so much simpler in this case. Let us say that one simple clock fits another if all its 
clockticks are also clockticks of the second: 
 
;;fits-cl 
(deffunction fits) 
(forall (?c ?d ) 
        (<=> (fits ?c ?d) 
             (forall (?p) (=> (clocktick ?p ?c) (clocktick ?p ?d))))) 
 
Then it follows that the first one's beat is an integral number of beats of the second.  
That long a sequence of identical beats of the second clock would serve as the rhythm of 
a calendar whose beat was the first clock. This is exactly the relationship between 
minutes and seconds, days and hours, and years and weeks. That these clocks all fit 
together so nicely is the reason why any time can be defined as a certain number of 
milliseconds after the birth of Christ. In discrete time, every clock fits onto the quantum 
clock, but in dense time arbitrarily fine misfits of rate can occur.  
 
We can now define a compound clock to be a sequence of clocks, each of which fits the 
next, which restarts at the beginning of each beat of the first. The basic relation is 
between a simple clock and a clock (not simple) which gets reset at midnight: 
 
;;dividesup-CL 
(defrelation dividesup 
(forall (?c ?d) 
        (<=> (dividesup ?c ?d) 
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             (and (forall (?p) 
                          (and (<=> (clocktick ?p ?c) 
                                    (and (member ?p (resettimes ?d)) 
                                         (= ?p  
                                            (starttime (value ?d ?p))) 
                                         ) 
                                    ) 
                               ) 
                          )))) 
) 
 
and then: 
 
6.6.3 ;;compoundclock-CL 
(defrelation compoundclock) 
(forall (?c ?d @s) 
        (<=> (compoundclock ?c ?d @s) 
             (and  (dividesup (value ?c ?d)) 
                   (compoundclock ?d @s)))) 
 
 
So each of the slower clocks has to inherit the same corrections, if any, that are made to 
the faster ones.  This means for example that adding a leap second at midnight on the 
17th of July makes the enclosing week, year or century also shift forward by that second, 
if the whole nested structure is asserted to be a compound clock. 
 
------------------------- 
 
 
There is almost no end to the temporal structures that could be defined and that might 
be useful. For example, this document has not considered intermittent intervals, or 
developed the idea of branching-time clocks, or transitivity tables for relativistic time.  
However, these ideas are clearly capable of considerable expressive power, and I hope 
that the careful comparative development might be of some utility to future temporal 
formalizers. 
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