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A CATALOG OF TEMPORAL THEORIES

Patrick J. Hayes
Beckman Institute and Departments of Philosophy and Computer Science

University of Illinois1

Abstract

This document surveys several structures that time can  be taken to have,  discusses the different
intuitions which justify them, and gives organised collections of axioms to describe them.

Introduction

Many ontologies or axiomatic or formal descriptions  somehow involve or assume a
formalisation of time.  The actual structure of time itself is often taken for granted when
constructing these formalisations. For example, most temporal database work simply assumes
that time is a discrete series of countable clock-ticks; some discussions assume that the timeline
is the real line R, while other authors use axioms which seem to be in conflict with Dedekind
continuity. There does not seem to be a single account ot the structure of time which is accepted
by everyone. Hardly any claim about temporal models is uncontroversial. Some philopshers
have even wondered if times are partially ordered. This 'catalog' tries to give a coherent
overview of several of these ideas and synthesise them as far as possible.

This is probably not a complete survey2, and  many temporal issues are deliberately excluded.
The aim here is only to look at ways of describing the actual structure of time, but not ways in
which language and beliefs are related to it (which would require a much larger document. )
Mixing epistemic and temporal languages raises several difficult problems in reasoning about
what will happen when new knowledge becomes available, for example. Much research has
been devoted to reasoning about how facts persist through time; the famous frame problem
arises squarely in this area. As time passes, objects are created and destroyed, and people gain,
and forget, information. Reasoning involving quantifiers and descriptions of states of knowledge
therefore needs to be sensitive to the changes that time can produce. There is nothing
intrinsically temporal about these issues, in fact – exactly similar kinds of complexity can be
produced with spatial variations – but they seem to be particularly acute in a temporal setting,
probably because people are so familar with the need to reinterpret past assertions with the
wisdom of hindsight. But in any case, these issues are beyond the scope of this document, which
is only concerned with the actual structure of the ‘time-line’3.

Some of the concepts in this document are new,  including the 'vector continuum' described in
section 5 and the formalization of clocks and calendars in section 6, but many are taken from
previously published work, especially (Van Benthem 1984) , (Freska 1992) and papers by James
Allen and myself.  Van Benthem’s book is an especially insightful and thorough survey.
Particular citations are given in the text. The axioms in this particular form, and the overall
organisation, are new.

1This work was also supported by the University of Southern California on grant  NASA NAG2-864
2 Suggestions for material which should be covered in later editions are welcomed.
3Although it need not be a line.
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1. What “time” means

The English word “time”has at least six different senses. The first,  perhaps  most fundamental,
refers to one of the basic physical dimensions, on a par with length, mass and voltage.  We will
have little to say about this other than to note its status as a physical dimension, called the
time-dimension. Time-dimension is a physical-dimension in the sense of  Gruber & Olsen (1994).

The next idea is that of the universe of time, or temporal continuum; a large temporal “space”1
within which all events are located, perhaps one dimension of the whole history of the
universe. We will call this the time-plenum.  It is often called the time-line, but it need not
always be regarded as linear. For example,  relativistic time has a partial ordering abstracted
from space-time, and planners often treat the time-plenum as branching into the future.
Sometimes the plenum is thought of as a sequence of ‘worlds’, each of which is therefore
considered to be timeless; in modal semantics these are often called temporally possible worlds.

The third concept is of pieces of time; physical entities whose sole dimension is time-
dimension. These are variously called time-periods or time-intervals, or simply intervals2.
Examples include the duringthe 1994 winter Olympics, the sixteenth century and 10:50 to 11.00
a.m. on 30 May 1993. These are particular pieces of time located in (or perhaps, parts of) the
time-plenum. Intervals are in many ways the most central concept for temporal reasoning since
they are the temporal extents of things. Events typically are thought of as occupying them,
propositions are true during them, and they are the lifetimes of objects.  We restrict attention to
the simplest and most widely used notion of a contiguous interval (containing all its
subintervals, having no gaps) but the idea of an intermittent interval, such as every
Wednesday afternoon during August 1973, is often useful.

A fourth notion is that of a timepoint.  Exactly what counts as a point, and the relationships
between points and intervals, seem to be particularly controversial and sensitive questions, and
many of the formalisations in use in computer science have taken one or another stance on the
answers to these questions. (In particular: whether or not a point can be thought of as an
infinitesimal interval; whether or not intervals are sets of points; and whether or not
propositions can be true at single points.) We will pay detailed attention to these issues later.

A fifth notion is that of an amount of time. Such things as a century,  25 minutes and as long as it
takes for the kettle to boil,  are amounts of time, which I will call durations.  It is natural
(although not necessary) to assume that every interval has a duration, but the concepts are
distinct. The relationship between an interval and a duration is like that between a particular
piece of real estate - say, the site of Sherwood Forest - and its area - say, 45.63 square miles.
English is often ambiguous between these meanings.  For example ‘century’ might refer to a
duration of 100 years, or to a particular interval such as the 19th century. A duration is a
constant-quantity of time in the sense of Gruber & Olsen (1994). In their ontology, constant
quantities of time are amounts that can be compared, added, and scaled; dividing a time
quantity by a standard reference time quantity (a unit of measure) produces a real number. In our
development here, more oriented towards clock-ticking,  we use integers.

The last notion of ‘time’ is of a position in a temporal coordinate system. Examples include
dates such as 14 March 1994, day-times such as 3.45 pm, or such things as stopwatch lap timings
in a race. These are usually the appropriate answer to a query concerning when something
happened.  Temporal positions are often thought of as points. If a temporal position has no

1 The pun in unavoidable. Sorry.
2Although a timeinterval need not be an interval in the sense of real analysis, so some care is needed in
terminology.
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duration, in contrast to an interval, this seems appropriate. (It does not seem to make sense to
ask how long 3.45 pm lasts, for example.) On the other hand, it is quite consistent to have
positions in a calendar which are themselves intervals, with a finer coordinate system defining
‘inner’ positions of hours and minutes, and one might claim that such refinement of the temporal
coordinates can always be achieved. So timepositions might be modelled in either way.

Although axioms do not always make these distinctions, this basic categorisation and the
terminology of time(dimension), (time)plenum, (time)interval, (time)duration, (time)point and
(time)position  will be used throughout this document.

These ideas are clearly related to one another, but the exact relationships can be defined in a
variety of ways.  A temporal theory may take points as basic and define intervals as a pair of
endpoints, or allow only intervals and find the notion of ‘point’ incoherent. Some theories
identify an interval with the set of points it contains, while others are incompatible with this
interpretation.  A duration can be defined in terms of a 'standard' interval – such as a clock tick
or a day – or it can be given an independent mathematical description.  A point can be regarded
as an infinitesimal interval, or as an 'atomic' interval, or as a 'quiescent' interval during which
no change takes place; or an theory may strictly separate the two categories of interval and
point.

Two relationships in particular deserve longer discussion.

1.1   Subinterval inheritance

In some theories, asserting that a proposition is true in an interval entails that it is true at all
points, or in all subintervals, of the interval. Other theories explicitly deny the necessity of
this subinterval inheritance, allowing something to be true during an interval without being
true in all subintervals.  This difference seems to reflect a fundamental split between two rival
intuitions, which can be illustrated by considering a bend in a road.

On a four-day drive from the east to the west coast, a bend in the winding road can mean that
one is driving in an easterly direction for ten minutes, say; and yet it seems still true, in some
sense, to say that one is driving westward.

One way to describe this says that 'driving west' is true in the four-day interval I, but false in
the ten-minute subinterval J. Examples like this, then, seem to show that a proposition can be
true in an interval without being true in all its subintervals. If asked, “Are you driving west
now?”, the appropriate answer, on this view, would be to inquire what sense of “now” was
intended, since driving west is false if “now” is taken to be a short surrounding interval, but true
if it is taken to refer to the longer interval which contains the whole journey.

This view fits with the idea that propositions are true only during intervals: the interval is
necessary to establish the appropriate context. It hardly makes sense, on this view, to ask for
the truthvalue of a proposition at an isolated timepoint.

Another way to describe the bent road, however, distinguishes two senses of driving west. One
means bound towards a western destination, the other means driving with one's vehicle aimed
at the western point of the compass. The correct way to describe the anomalous situation,
according to this view, is that driving west-1 is true throughout I (including during J), but
driving west-2 is false throughout J. If asked, during J, whether one were driving west, the
appropriate reply would be to ask which sense of “driving west” was meant, because one is true
and the other is false. This view regards a claim of truth during an interval as always
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implying truth during all subintervals, and insists that apparent counterexamples always
involve an ambiguity of meaning.

The second intuition fits very naturally with the view of an interval as a set of points. Given
this set-theoretic vision of an interval, it is not easy to see what it could mean for something to
be true throughout the interval without it being true at every point in the interval, and hence
through every subinterval.

For example, Allen (1984) argues that someone can be writing a novel during a period of, say, a
year, without this meaning that they never eat or sleep; hence the process of writing a novel is
not inherited by subintervals. Galton (1990) however responds by distinguishing two senses of
“writing a novel” (one means having that as one's current professional goal, the other means
actually hitting the keyboard) and claims that both of these are inherited by subintervals.

While the second position often seems philosophically convincing, its practical effect can be to
create many predicates with subtle nuances of meaning solely for the purpose of maintaining
temporal consistency.  Fortunately the second view can be modelled in the first one in a way
that avoids this conceptual promiscuity.  If one accepts the first view, in which truth is always
relative to an interval, the second view can be modelled by claiming that the two different
senses of the proposition which the second view requires, are just the proposition relativised to
different intervals. On this view, we can allow that  P-in-interval-I  is true in all subintervals
of I, ie that a proposition relativized to an interval is inherited in all its subintervals. One
way to express this distinguishes truth on an interval from truth in an interval. The idea here
is that a proposition being true on an interval identifies that interval as an appropriate
reference interval for the proposition. Truth in an interval means that there is a containing
interval on which the proposition is true. Subinterval inheritance of truth in an interval then
follows simply from the transitivity of the subinterval relation.  Truth in an interval need not
entail truth on that interval; which is exactly the case when the road has a bend in it.

It is quite consistent to accept both positions, and allow some propositions to be inherited by
subintervals and some not. That a car motor is running, for example, seems to be a plausible
candidate for subinterval inheritance. This can be described by saying that for such predicates,
every subinterval of a reference interval is itself a reference interval.

1.2 .  Intervals and points

Intervals can be thought of as related to points in several different ways.

The first view is that points are intervals, but intervals which are as short as possible: single
clock-ticks, as it were. If time is thought of as being discrete this is quite coherent, and it means
that there is no real need for the concept of timepoint, since all times are intervals.  However,
since other theories maintain the distinction,  I will use the term moment to refer to such a basic
interval.  A moment is an interval with no subintervals, or an interval with no seperable
timepoints inside it. Moments cannot overlap or be contained in one another. They have no
internal structure; they arepoint-like intervals.  Another way of describing this is that a
moment is an interval during which nothing can happen; a quiescent interval. This can be
misleading, however, as any beginning student of calculus will testify, since something can be
happening at a point  – something might be moving, for example – even though it is too small to
be when a complete event takes place.

Some theories identify  timepoints as being the  moments; others interpret them as  lying
between the moments, since moments are intervals andpoints are places where intervals meet.
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These interpretations seem incompatible, but they can be made consistent if one proceeds
carefully, as we show in section 5.

Some views insist that time is continuous, so that there can be no moment-intervals.  Several
different ideas are still possible, however. The intuitions behind these alternatives can be
illustrated by the following ancient puzzle about the continuum. Consider dividing an interval
into two equal halves. The division must happen at a point; but which half contains that point
of division? Whichever half contains it must be not exactly equal to the other: but by
hypothesis the halves are equal. Exactly the same intuitive problem arises when we consider
intervals which meet, without there seeming to be any reason to put the meeting-point in either
one.(Allen 1984)

This puzzle does not have the logical status of Russell's paradox, but it is of interest here
because it serves to identify two rival intuitions about the continuum. According to one,  now
standard in mathematics, points are first-class objects and an interval is identified with the set
of points that it contains. According to the other, points serve to locate positions within or
between intervals, which are first-class objects with extents which can be compared. If we stick
to either intuition carefully the puzzle vanishes. On the first, the conclusion is simply that it is
impossible to divide an interval exactly symmetrically in half, and we are led to distinguish
open and closed intervals. The second intuition insists that such equal splitting must be possible,
and even happen at a point, but rejects the conclusion that this point must be contained in either
half. If one thinks of an interval as like a piece of glass filament, something which can be
snapped neatly in two, then to ask which half 'contains' the point of division would seem
perverse, since points are not themselves to be thought of as parts of the physical continuum.

Contemporary mathematical theory has firmly adopted the first idea, which we will call the
point continuum. However, the second is also a coherent position, which we will call the glass
continuum. In the glass continuum, intervals are not definable as sets of points, but are things in
their own right, intervals sui generis. Several of the temporal theories given later describe the
glass continuum. We demonstrate that the idea is coherent by describing models for those
theories. In the point continuum intervals are either open or closed. In the glass continuum,
endpoints are not contained in either interval, and there is no open/closed distinction. In the
point continuum it is possible to have a closed interval consisting of a single point (which is also
both the endpoints of that interval), but this is impossible in the glass continuum (although it
is possible in the vector continuum: see section 5)

There are examples which argue for the intuitive plausibility of both ideas. Consider a light
going out.  The intervals of its being on and then off seem to  meet one another, and intuition
suggests that the question of whether the light is on or not at the point of extinguishing is
meaningless. On the other hand, consider a ball tossed into the air. Qualitative reasoning
suggests that the intervals of the ball's upward velocity being positive and negative also meet
at a point, but here the meeting-point seems clearly distinguished by a predicate – that the
ball is motionless – which is true there and nowhere else. This is impossible in the glass
continuum, but very natural in the point continuum. Later we will consider theories which allow
both kinds of meeting.

It is sometimes claimed that any physical truth must hold during an interval, although
perhaps a very short one, and that points are mere mathematical abstractions. What is
coventionally called a timepoint must therefore be understood to really be a very short
interval, shorter than the current 'grain size' of the theory.  While this idea is physically
plausible, I do not think the mathematical consequences have been fully explored. This is
compatible with the glass continuum, where it is used to explain the tossed-ball example by
insisting that the ball is motionless for a very short period. However, it is also compatible
with the point continuum, where it can be used to argue that changes of truthvalue are never
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instantaneous, so such intervals do not exactly meet but are separated by short linking moments
during which the transition happens. In the point continuum these intervals can be single
points, so that the intervals of the lights being on and being off would meet at a point at which
the light was neither on nor off, but was going out.

Finally, a quite different idea of the relationship between points and intervals is based on the
idea of information. On this view an interval is an expression of doubt about the exact position
of a point. Decreasing the size of an interval increases the amount of information about the
location of the point, i.e. the degree of precision. This 'information' view of intervals is often
seen as incompatible with the first idea of identifying an interval by its endpoints, because this
would assume infinite precision. It leads to axioms which focus on different relationships. For
example, several of Allen's thirteen relations now become meaningless, since it is impossible to
distinguish meeting from overlapping.
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2.  Styles of temporal language

So far we have discussed only the nature of time itself. But the language used to describe time
can also vary. Formalisms have been adapted in various ways to refer to temporal
relationships, to propositions whose truth may vary with time, and things whose properties
may change with time. In this section we will briefly survey the main options: a full survey
would require a book-length document.

Time can be involved with knowledge representations in at least three distinct ways. First, we
might represent knowledge of time in the same way we might represent knowledge of anything
else, simply by writing descriptions of time.  Second, the expressions of the knowledge itself
might be thought of as being temporally relativised in some way, so that for example the
language might involve tenses, or the assertions be time-indexed in some way. And third, the
inference machinery which manipulates the knowledge might itself be thought of as embedded
in time, so that there is a notion of ‘now’ and issues of  temporal truth maintenance become
relevant.

2.1 Timeless quantification

The most direct way to describe time simply treats times as objects and describes them by
axioms which relate times to other things. For example, one common way to acknowledge the
temporal sensitivity  of some relations (and functions) is simply by allowing times as an extra
argument, often with some convention such that it must be the last argument. To say that Joe and
Anne were married during 1993 one might then simply write

(married Joe Anne 1993)

Alternative styles include thinking of the world as consisting of things that have duration, so
that one might write

(contains (time-of (marriage Joe Anne)) 1993)

where time-of is a function from things to the timeperiods they occupy.

Rather different axioms result if one thinks of these times as points or as intervals; but they
share the property that the language itself is not temporally embedded, so that all quantifiers
are timeless.  Any temporal restrictions on quantification must be made explicit. It is therefore
usually necessary to have some way of asserting that something exists at a time. This can be
done by a relation  existswhen  between things and times, for example.

A familiar use of the temporal-argument technique is seen in the  'situation calculus', which
describes actions in this way:

                  (forall (?t ?action)(=> (and (<action-conditions> ?action)
                                   (<antecedent-conditions> ?t)   )
                              (<consequent-conditions> (do ?action ?t))
      ))

where do is taken to be a function from a time and an action, to the time at the end of the action.
Here the time-ordering is defined simply by the syntactic nesting of 'do' terms, so that  t  is
always earlier than (do a t).  Since this is a partial order,  the time-plenum is considered to
be branching, with alternative futures corresponding to alternative courses of action.
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 The situation calculus assumes that the universe is stable unless actions happen to alter it.
Thus, although a situation seems to be an interval, since nothing happens during these intervals
they are point-like in the sense just described. Notice this is not here meant to imply that they
are of short duration, only that they have no internal temporal structure which can be
described in the language. The only temporal structure in the plenum assumed by the situation
calculus is a partial ordering of such intervals; they cannot overlap or be contained in one
another.

Variations on this style of axiomatic description have been much used in planning, and have
become almost a standard in parts of AI. It has obvious connections with state-space
descriptions of computation. For our purposes it is sufficient to note that while this style of
description treats times as point-like and does not utilise the more complex interval
relationships, the use of temporal arguments does not necessarily restrict one to this limitation.

2.2  Holding true

The second style asserts that sentences ‘hold true’ at times, so that one would write something
like the following.

(holds (married Joe Anne) 1993)

(The use of a different font for this holds is deliberate, as holds already has a distinct
meaning in KIF.  The above expresion is not legal KIF! )  Notice that the “inner sentence” is
timeless. The symbols holds and married cannot here both be understood to denote
conventional extensional relations, for then the first argument to  holds would be a truthvalue.
If the “inner” sentences are indeed sentences, then holds is essentially a modal operator. An
alternative view  is to regard all the inner expressions as terms denoting propositions, so that
relation symbols such as “married” become functions from individuals to propositions. This has
the awkward consequence of needing almost the entire syntax of first-order logic to be mirrored
in an “inner” language of terms.

It is not exactly clear what holds means, however.  If times are regarded as points (or  quiescent
intervals) and if the ‘inner’ language does not have quantifiers, then this can be
straightforwardly translated back into plain logical syntax by applying the following
recursive rules:

(holds  (and !,")  ?t)  --->   (and (holds  ! ?t) (holds  " ?t))
(holds  (or !,")  ?t)   --->   (or (holds  ! ?t) (holds  " ?t))
(holds  (not !)  ?t)    --->   (not (holds  ! ?t))
(holds  (R a1 ... an) ?t)  --->  (R a1 ... an ?t)

(Sometimes it may be appropriate to just forget the last rule. It depends on whether or not the
relation is thought to be temporally sensitive. For example, the natural translation of

(holds  (=> (and (man ?x)(married ?x Julia))(happy ?x)) T)

would be

(=> (and (man ?x)(married ?x Julia T))(happy ?x T))

since men may change their states of marriage and happiness, but rarely their sex.)
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However, if the times are understood to be nonpointlike intervals, and holds  means holding
true throughout the interval, then negation and disjunction need to be treated more carefully. If
it is possible for both ! and (not !) to be true during parts of the interval, then

(not (holds  ! ?t))
is a weaker claim than

(holds  (not !) ?t)
and the third rule is inadequate (although not incorrect).

Following Allen, we might replace the negation rule with

(holds  (not !)  ?t)  --->
(forall (?s)(=>(in ?s ?t)(not (holds  ! ?s))))

where  in is the relation between an interval and a containing interval.   This only makes
sense, of course, if appropriate axioms are provided for in. If  in is taken to be irreflexive
then this assumes that  ?t  always has a proper subinterval, and this is not true in discrete time
where ?t  might  be a single clock-tick. The reflexive interpretation (where every interval is
in itself)  therefore seems more natural here; or we could assume that time is dense.

 The disjunction rule cannot be similarly replaced with

** (holds  (or !,")  ?t) --->
(forall (?s)
(=>(in ?s ?t)(or (holds  ! ?s)(holds  " ?s))))

To see why, consider an oscillator and let  ! and "  be respectively the propositions that it is in
its two states. Then (or ! ") is always true, but there may be many subintervals during
which the oscillator is not constantly in one state or the other, especially if we turn up the
frequency. DeMorgan's laws provide the following translation for disjunction, which is
regrettably complicated:

(holds  (or !,")  ?t) --->  (forall (?s)(=>(in ?s ?t)
(exists (?u)(and(in ?u ?s)

(or (holds  ! ?u)(holds  " ?u))))))

Quantification is also a little more complicated. If we allow quantified sentences to hold at a
time, allowing expressions like

(forall (?x)(=> (holds  (exists (?y ?z)
(and (not (= ?y ?z))

(married ?x ?y)
(married ?x ?z)))

?t)
(exists (?t1) (and (later ?t ?t1)

(holds  (troubled ?x) ?t1)))
))

then it is natural to think of quantifiers inside  holds  as ranging over only those individuals
that exist at the time mentioned, so that one might write

(holds  (not (exists (?x)(and (heavierthanair ?x)
(flyingmachine ?x))))

 1800)
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With this interpretation,  holds  is referentially opaque.

The simplest way to interpret this language (still thinking of times as points or point-like
intervals) can then be defined by extending the recursive translation with the following two
rules:

(holds  (forall (?x) !)  ?t)   --->
(forall (?x)(=> (existswhen ?x ?t)(holds  ! ?t)))

(holds  (exist (?x) !)  ?t)   --->
(exist (?x)(and (existswhen ?x ?t)(holds  ! ?t)))

where existswhen is the relation mentioned earlier which relates something to the time
when it is exists. The quantifiers after this translation are syntactically identical to those
before, but have a rather different meaning from: they are timeless, while those before are
temporally restricted. Again, however, if propositions  hold during  (nonquiescent)
timeintervals, then the existential translation has to be more baroque:

(holds  (exist(?x) !)  ?t) --->
(forall (?s)(=>(in ?s ?t)

(exist (?x)(and (existswhen ?x ?s)
(exist (?u)(and (in ?u ?s)(holds  ! ?u)))
 ))
))

)

(To see the need for all this fuss consider a relay race, let  !  mean that ?x is carrying the
baton, and suppose that the first runner dies of heart failure after his lap, but before the race is
over. Somebody is carrying the baton even when one of the earlier carriers has ceased to exist.
Or consider a belt delivering pieces of coal to a furnace, and the claim that it is never empty.)

One claimed advantage of this holds  notation is that it allows a variety of different ways
that something  might be true at a time. Allen (1984) for example distinguishes between
propositions (he calls them properties), which hold  and satisfy subinterval inheritance,
events  which occur and are never inherited by subintervals, and processes  which also occur
but which are inherited by some subintervals.  Galton (1990) similarly distinguishes three
kinds of holding;  holds-at, meaning true at a point,  holds-in and holds-on.  I have not yet found
a need for this apparent advantage, however. The distinctions seem to always be describable as
differences in the kind of interval or kind of proposition, obviating the need for the notational
and axiomatic complexity introduced by such intricate distinctions of vocabulary.

2.3 Tenses1

Tense logics extend conventional logics by  modal operators corresponding to the English past
and future tenses, so that one would write

(F (married joe anne) )

to mean that Joe will be married to Anne at some time in the future, without mentioning times
explicitly.  P similarly refers to the past. Tense logics do not usually provide any way to refer to
dates directly, and one would need to write something like

1 Tense logics are thoroughly described in the logical literature and their properties well understood. I
mention them here only for completeness. This brief section is not an adequate introduction to the subject.
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(F (and (married joe anne) (date-is 1993)) )

to convey such information (and provide axioms for date-is, of course).  Tense operators are part
of the sentential syntax in just the same way as the propositional connectives, so that one can
have such assertions as

(F (and (not (married joe anne)) (P (married joe anne))))

which says that Joe and Anne will be divorced at some time in the future.

Notice that there is an implicit  "now"  in such an assertion. These languages are temporal in a
rather deeper sense than the previous ones, since here the very act of assertion is itself
understood to have a temporal location.  A tense-logical sentence only makes sense relative to a
time when it is understood to be asserted. The usual model theory for such languages interprets
a sentence to mean a function from temporally possible worlds to truth-values.  Different axioms
for F and P correspond to different assumptions about the relationships between these possible
worlds, which amount to different assumptions about the structure of the time-plenum.

Tense logics can usually be translated into a theory written using  holds.  The usual method of
translation introduces a binary ordering relation between times. It amounts to a recursive
application of the following transformation function #, which takes a sentence ! in tense logic
and a variable  ?t  denoting a time, to a sentence in the  holds  language:

If ! contains no modal operators then

#[!,?t]           -->     (holds  ! ?t)

and otherwise

#[F(!),?t]  ->  (exists (r)(and(before ?t, ?r)(holds  #[!, ?r] ?r)) )
#[P(!),?t]  ->  (exists (r)(and(before ?r, ?t)(holds  # [!, ?r] ?r)) )

where  ?r is a variable different from any other free variables.  This captures the standard
semantics of the modal operators, which contain an implicit quantification over temporally
possible world, here regarded as times.  Different modal logics correspond to different axioms
describing the relation before.

For example, the earlier assertion concerning the future divorce of Joe and Anne translates into:

(exists (?t1,?t2) (and (later ?t1,?t)
(later ?t1,?t2)
(holds  (married Joe Anne), ?t2)
(holds  (not (married Joe Anne)),?t1)  ))

Notice that the variable ?t is free in this expression . The translation process always leaves a
single free temporal variable corresponding to the implicit ‘now’.

This rather simple translation from modal tense logic to a nonmodal language is not always
completely adequate to capture some of the more complex tense-logics, in particular those
involving a “continuous present” in which there is a modal operator corresponding to the
assertion that something is happening,  as opposed to merely true.  Nevertheless, similar
translations into a nonmodal language are often possible, and many of the special temporal
logics which have been developed for AI use are quite unnecessary.
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2.4  Temporal knowledge-bases

Finally,  the language need have no explicit or implicit temporal reference, but simply be
understood to be asserted (or believed) in a temporal framework, with some other mechanism
keeping track of when it is supped to be true.  Typically, the context is a database or
knowledge-base of some kind which is keeping track of a changing world, and the problem is to
maintain consistency with the changing state of the environment. Examples include dynamic
control of a robot or an industrial system,  knowledge fusion in military command situations,
'temporal databases' and truth-maintenance methods.  While such a wide variety may not be
solvable by a single technique,  they all involve temporally sensitive representations in which
the representation language  itself temporally 'located' and often therefore need not make
explicit reference to  times.

In these cases there is often a sense that processes which manipulate sentences need to be made
sensitive to the passage of time, in contrast to the typical planner which uses the first kind of
notation to reason about times but has no way to express the concept of 'now'.

If a temporally located language is itself temporally expressive, then the situation becomes
more complex.  Under these circumstances the meaning of 'now' is constantly changing in a way
which can be expressed in the language, so that future is constantly becoming the present. If the
language is suitably expressive this introduces many complex representational problems which
are beyond the scope of this document. For example, I know of no really satisfactory way of
formalising the meaning of a statement of urgency such as “we must act soon or the bridge will
collapse”, one that would enable us to infer the need to stop wasting further time doing more
inference. It seems to be necessary to assume something like an interrupt architecture in the
structure of the reasoner, for example.

Issues like this arise in manipulating temporal databases, especially when data entries which
refer to the past are liable to correction in the future. For example, temporal database
terminology (Snodgrass et al 1993) distinguishes the transaction time of a record - the time
when it was entered into the database - from the valid time, which is the time that the event
or proposition it represents is asserted to be true.
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3.  Temporal Theories

The theories we consider differ in several respects, both in their axiomatic style and in the
intuitions they support.  Most theories are consistent with the following ideas:

1.  A timeinterval is a connected piece of the time-plenum. Things that have a temporal extent,
or which occupy time in some way, must have a timeinterval which is their life-span.
2. Every interval has a unique temporal magnitude.
3. An interval has two endpoints, and is uniquely determined by those endpoints.
4. A point can be uniquely determined by the magnitude of the interval between it and some
special 'zero' temporal position (such as midnight, or January 1 of the year zero)

All of this is compatible with various ideas about the structure of the continuum.  Some theories
describe the point continuum, others the glass continuum, and others assume discrete atoms of
time.  All the axioms use nontemporal quantification, referring to times explicitly as objects.

Notation

Theory boundaries are indicated in the text and given exactly in Appendix 3. NOTE: simply
conjoining all the axioms listed in a section may not always form a coherent theory, since
alternatives are often listed together.  All the axioms and definitions are given in KIF,
(although KIF-style notation is also used to discuss other axioms which are not correct KIF,
notably second-order axioms. ) Sequence quantification is sometimes used, and variadic
relations are used when convenient, but most of the axioms are equivalent to simple first-order
logic.  KIF text is written in Courier font.

Every axiom has been given a name, following some simple naming conventions. A theory name
is all uppercase. An axiom name like LP-foo means an axiom called foo in the theory  LP (or
sometimes, to save space, a contraction of the full name is used), but a name like foo-LP means
the definition of the name foo in the theory LP, and a name like foo-LP-baz means part of the
definition of foo in the theory LP.

Whether or not a theory constitutes an ‘ontology’ is still an open question at the time of writing.
The chief problem seems to be the question of definitions. In an ontology every name must have
a ‘definition’, but in a nontrivial logical theory it is impossible for every relation and function
name to have a defintion, since defined terms are eliminable.  In Appendix 3,  definitions are
indicated as far as possible using the distinctions in KIF, so that ‘ := ‘ indicates a logical
definition  while the weaker sense of ‘definition’ really only means something like ‘relevant
to’, and indicates a collection of axioms which constitute a theory of the name in question. Some
names can’t have a definition, notably the basic sortal predicates such as timepoint; while in
other cases, it is impossible to separate the axioms into disjoint sets each of which defines one
name.   The name index in Appendix 2 gives, for each relation and function name, a list of the
theories which can be taken to establish its meaning in one way or another.

For many of the theories we discuss several possible models or classes of models, especially
nonstandard  models which differ in some respect from the intended intuition.  This is a
deliberate attempt to show the limitations of expressive power that many axiom sets have.
That axioms have nonstandard models is not necessarily a condemnation of them, however, and
is not meant to be so taken. Any first-order theory of arithmetic has nonstandard models, for
example.
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The chief categories are indicated by the relations  timepoint, timeinterval and
timeduration. These relations are all predicative,  i.e. they are variadic but simply assert
that a unary predicate holds of all their arguments. A relation $ is predicative when:

(forall (?x @l) (<=> ($ ?x @l)
(and ($ ?x)($ @l))))

Another use of variadic notation throughout this document will be in propositions involving
chained relations. A relation is chained when it asserts a binary relation between each of its
arguments in succession, ie when:

(forall (?x ?y @l) (<=> ($ ?x ?y @l)
(and ($ ?x ?y)($ ?y @l))))

Examples of chained relations include equality, the temporal ordering of timepoints and the
meets relation between intervals. A chained relation may or may not be transitive.

These axioms can be transcribed into KIF by using the ‘holds’ notation by the following three
axioms, which constitute the theory BASIC-SYNTACTIC-TOOLS used throughout the rest of
the catalog:

;;predicative-BASIC
(defrelation predicative (?r) :=
     (forall (?x @l)
             (<=>
              (holds ?r ?x @l)
              (and (holds ?r ?x) (holds ?r @l)))))

;;chained-BASIC
(defrelation chained (?r) :=
     (forall (?x ?y @l) (<=> (holds ?r ?x ?y @l)
                             (and (holds ?r ?x ?y) (holds ?r ?y @l)))))

;;BASIC-syntax
(predicative predicative chained)

3.1. Simple Point Axioms

These axioms simply describe an ordering of timepoints. Intervals, etc. are not mentioned. The
chief interest of this is to act as a definitional support  for later, more complex, theories.

All the quantifiers in the axioms in this section should be understood to be restricted to
timepoint  when the axioms are used in a broader context. This restriction is omitted here for
clarity.

;;LP-syntax
(predicative timepoint)

There is one relation,  before,  between timepoints. It is a chained relation:

;;before-LP-syntax
(chained before)

It should follow from before-LP-syntax and BASIC-SYNTACTIC-TOOLS that
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(chained before)
and hence follow from
(before a b c)

that (before a b) and (before b c).

Right now (10/10/94) I am not certain that this does follow in KIF , in fact.

Ordering axioms: before is transitive, irreflexive and linear:

;;before-LP-trans
(forall (?x ?y ?z)(=> (and (timepoint ?x ?y ?z)(before ?x ?y ?z))
                      (before ?x ?z)))

;;before-LP-irreflex
(forall (?x)(=> (timepoint ?x)(not (before ?x ?x))))

;;before-LP-order
(forall (?x ?y)(=> (timepoint ?x ?y)
                   (or (= ?x ?y) (before ?x ?y) (before ?y ?x))))

These axioms are sufficient to guarantee that all timepoints lie on a single line.  However, it
allows that line to be either finite or extremely infinite, as in the nonstandard models
described below.

Time is infinite in both directions:

;;before-LP-infinite-past
(forall (?x)(=> (timepoint ?x)
                (exists (?y)(and (timepoint ?y)(before ?y ?x)))))

;;before-LP-infinite-future
(forall (?x) (=> (timepoint ?x)
                 (exists (?y) (and (timepoint ?y)(before ?x ?y)))))

This pretty much accounts for the overall shape of the temporal universe of points, although it
will be useful later to define the ‘before-or-equal’ relation:

;;bbefore-LP
(defrelation bbefore (?x ?y) :=
(and
(chained bbefore)
(<=> (bbefore ?x ?y)(or (before ?x ?y)(= ?x ?y)))

These axioms constitute the basic theory of point-ordering, called LINEAR-POINT, or LP.

The fine structure can be described in two different ways,  as dense or discrete.

Fine-structure axioms:

;;LP-dense
(forall (?x ?y) (=> (timepoint ?x ?y)
                    (=> (before ?x ?y)
                         (exists (?z)(and (timepoint ?z)
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                                          (before ?x ?z ?y))))))

This asserts that timepoints are dense.  Adding this to the definition of ‘before’ produces the
theory DENSE-LINEAR-POINT, or DENSE-LP

An alternative (and inconsistent) assumption is that there is an atomic spacing of timepoints
which allow no closer divisions; ie, that there simply are no points between two adjacent
atomic 'ticks'. This is a bit more complicated to express:

;;DLP-discrete

(forall (?x)(=>(timepoint ?x)
        (and
         (exists (?y)
                 (and (timepoint ?y)
                      (before ?x ?y)
                      (not (exists (?z)(and (timepoint ?z)
                                            (before ?x ?z ?y)))))
          (exists (?y)
                  (and (timepoint ?y)
                       (before ?y ?x)
                       (not (exists (?z)(and (timepoint ?z)
                                             (before ?y ?z ?x)))))))))

Adding this to LP produces DISCRETE-LINEAR-POINT, or DLP.
Notice that DLP-discrete already has the infinity assumptions built into it, so the infinity
axioms are redundant in DLP

Van Benthem (1983) shows that  DENSE-LP and DLP are syntactically complete.  That is, any
assertion using this (admittedly rather restricted) vocabulary which is true in all first-order
models of these axioms can be deduced from these axioms. They entail all there is to be
entailed; all sentences (written in this vocabulary) which are consistent with them, are
already provable from them.

So there's nothing more to be said about linearly ordered times without extending the
vocabulary in some way.

Models

The obvious models are the rationals Q of DENSE-LP and the integers N of  DLP. The
real line R is also a model of DENSE-LP, but it is not easy to distinguish Q from R within
a first-order theory.

However, there are also many nonstandard models. For example, consider the rational
plane with

<a,b> before <c,d>   iff     a<c    or    a=c and b<d.

This amounts to Q copies of Q ordered in sequence, and it is a model of DENSE-LP.
Similarly, N copies of N ordered in sequence is a model of DLP. These first-order theories
are not sufficiently powerful to state that all pairs of points are only a finite distance
apart; they can describe the ‘local’ structure of the line, but all they can say about the
‘global’ structure is that it is a total order, and to fully capture the structure of the line
one needs to say more than this, as the existence of these models shows.
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The key problem is how to express ‘finite’. In the standard models two points can only be
a finite distance apart, and this cannot be expressed in this (or any other) first-order
vocabulary. For example, an axiom which says that the distance between two points is
always an integer is still true in the nonstandard models.

Exactly what counts as a 'point' is also not clearly specified by these simple theories.
Consider for example the model of DLP created from the standard model by simply
removing the closed unit interval around zero, so that

a before b  iff  (a < b < -1) or (a < -1 and b > 1) or (1 < a < b)

This line with a hole in it (or, with the zero point swollen into an interval) is
indistinguishable from the standard model from within this theory. It is order-
isomorphic to the rational line.

Theories which more exactly specify the standard models can be got by adding a little
second-order expressiveness, provided of course that these second-order quantifiers are
understood to have the standard interpretation, ie varying over all properties. Adding
the following axiom to DENSE-LP specifies the integers up to isomorphism. (This is
Dedekind's principle of continuity, asserting that whenever a property changes with
time, there must be a 'dividing point' which separates the times when it is true from
those when it is not (taken in this form from Van Benthem 1983).) When added to the
DLP theory this still does not quite nail down the standard interpretation, since R copies
of R is still a nonstandard model, but it forces the models to be suitably dense in
timepoints, ruling out the mere rationals and guaranteeing that there are no gaps.

Dedekind:   (forall (?p)(=>
             (and
                 (exists (?x)(?p ?x))
                 (exists (?x)(not (?p ?x)))
                 (forall (?x ?y)(=>(and(?p ?x)
                                       (not(?p ?y)))
                                   (before ?x ?y)))
              )
              (exists (?z)(forall (?u)
                               (and  (=>(before ?u ?z)
                                        (?p ?u))
                                     (=>(before ?z ?u)
                                        (not (?p ?u))
                                )
              )))

When interpreted in the integers, the ?z asserted to exist is the last integer when ?p is
true (or the first where it is false); when interpreted in the reals, it is the 'dividing'
point where the intervals of ?p's truth and falsity meet one another.

To see how this rules out the nonstandard models, consider a model of DLP consisting of
two copies of N, and let p  be the property of being in the first half of this double-line
model. Then there is no single point which ‘divides’ the points satisfying p from those
that do not: but the Dedekind axiom requires such a point to exist.

This property p is not expressible in the language, however, so if we interpret the second-
order quantifier in the Henkin sense, ie as varying over all relations which can be named
using the vocabulary of the theory, then the Dedekind axiom  no longer has the semantic
force necessary to eliminate nonstandard models.  The importance of this lies in the fact
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that there is no computational way to distinguish a ‘classical’ semantics from the Henkin
semantics, since second-order logic is complete relative to the Henkin interpretation.
Dedekind is essentially second-order: a first-order transcription of it would not carry the
semantic force needed to rule out the nonstandard models of out axioms.

We could take bbefore as the basic relation and define  (before ?x ?y) as
(and (bbefore ?x ?y)(not(bbefore ?y ?x))). This has the advantage of not
needing to use equality.  However, there are now some rather unintuitive models, eg one
in which the  bbefore  relation is circular and the  before  relation is therefore
everywhere false. These correspond to nonstandard models of equality which allow
equivalence classes of indistinguishable individuals. If the logic has equality, then
asserting the connection is sufficient to explicitly eliminate these peculiar
interpretations:

     (forall (?x ?y)
         (=> (bbefore ?x ?y ?x)  (= ?x ?y)))

A useful extension to the vocabulary is provided by skolemising  DLP-discrete, which gives
the functions “next” and “previous”:

;;next-DLP
(deffunction before
(forall (?x)(=>(timepoint ?x)
        (and
         (before ?x (next ?x))
         (not (exists (?z)(and (timepoint ?z)
                               (before ?x ?z (next ?x)))))
))))

;;previous-DLP
(deffunction previous
(forall (?x)(=>(timepoint ?x)
        (and
         (before (previous ?x) ?x)
         (not (exists (?z)(and (timepoint ?z)
                               (before (previous ?x) ?z ?x)))))
))))

3.2  Alternative: nonlinear time

If we simply omit  before-LP-linear then timepoints can be only partially ordered. Then for
example one model is the real plane with <x,y> before <u,v> just when x<u, which allows
every point to have infinitely many immediate successors and predecessors.  Often we want to
insist that time only branches in the future direction. To do this, replace the axiom with:

;;before-BP-order
(forall (?x ?y ?z)
        (=> (and (timepoint ?x ?y ?z)(before ?y ?x) (before ?z ?x))
            (or (= ?z ?y) (before ?z ?y) (before ?y ?z))
        ))

This allows a 'forest' of branching structures. To restrict to a single tree add:

;;before-BP-tree
(forall (?x ?y)
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        (or (= ?z ?y) (before ?z ?y) (before ?y ?z)
            (exists (?z) (and (before ?z ?x) (before ?z ?y)))))

which forces all timepoints to fit into a single tree-structure.

If we make these changes and omit the backward-infinity axiom (to allow the common
interpretation in planning systems in which a 'start' time is considered for the planning
process), the resulting theory is christened BRANCHING-POINT. Just as in the linear case,
this can be extended by assuming either density or discretness. The density axiom LP-dense
works here as before,  but the discreteness axioms needs to be stated slightly differently.

;;BP-discrete
(forall (?x)(=>(timepoint ?x)
   (and (exists (?y)
           (and (timepoint ?y)
                (before ?x ?y)
                (not (exists (?z)
                           (and (timepoint ?z)(before ?x ?z ?y))))))
        (=> (exists (?y)(and (timepoint ?y) (before ?y ?x)))
            (exists (?y) (and (timepoint ?y)
                              (before ?y ?x)
                              (not (exists (?z)(and (timepoint ?z)
                                              (before ?y ?z ?x))))))))
)))

Adding BP-discrete to BRANCHING-POINT gives the theory DISCRETE-BRANCHING-
POINT or DBP.

Models

Possible models include any suitably large tree-structured graph. In particular, a
Herbrand universe of terms provides a model, in which  before denotes the subterm
relation. (Notice this would no longer be true if we add the backwards infinity axiom,
since there are always terms with no subterms.)

Any model of the linear theory is also a model of the corresponding branching one, of
course, so the nonstandard “stretched” orderings are still possible here. However, there
are also other more exotic possibilities. For example, consider the set of finite sequences
of integers, and interpret before as the initial-subsequence relation. Then the
timeordering is like the integers, satisfying BDP, but every time has infinitely many
immediate successors, so the branching rate is infinite. It is not clear whether this should
be regarded as “nonstandard”, however. I do not  know how to specify simply that the
branching rate is finite without describing some definite branching pattern.

If we add the backward infinity axiom then infinite-branching models are still possible.
For example, consider  infinite sequences of integers which are not isomorphic to a
subsequence of themselves. Think of these as directed backwards in time, so each
represents an infinite history reaching to the present. Now let  before denote the tail-
subsequence relation. Again there is infinite branching, but now each time also has an
infinite past.

3.3  Alternative: Situation calculus time

The interesting part of the situation calculus notation from our perspective is how it describes
timeordering.  Times –situations – are partially ordered by the structure of the 'do' terms which
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can be generated by instantiation from those which occur in the action axioms.  The set of
possible such terms amounts to a subset of the Herbrand universe of the language.

Situation calculus axiomatisations succeed as a basis for planning only if their ways of referring
to situations are restricted to this subset. For example, suppose that we wish to assert an
optimistic claim that somewhere in the future of any situation, it will rain pennies from
heaven. It would be natural to write something of the form

****   (forall (?s) (exists (?t) (and (before ?s ?t)
                                 (rains-pennies-from-heaven ?t)) ))

But when skolemised, this would completely trivialise the task of budgetary planning: just do
the skolem function. The situation theory implicitly assumes that functions from situations to
situations represent actions that can be performed, not just assertions about times that may
exist. Because of this restriction, we could connect the usual situation-calculus notation to the
present theories by asserting that one time is before another just when there is a sequence of
actions which take the first to the second. This can be stated in KIF using sequence variables, as
follows.

;;done-BDP
(deffunction done
(forall (?s ?a @l)(and
                    (= (done ?s ?a @l) (do ?a (done ?s @l)))
                    (= (done ?s ?a) (do ?a ?s)) ))
)

That is,  done takes a situation and a sequence of actions and returns the situation resulting from
do-ing those actions in that sequential order.  The following axiom can then be regarded as an
alternative definition of the point-ordering relation before in terms of the do relation.

;;before-do-BP
(forall (?x ?y) (<=>(exists (@l)(= ?y (done ?x @l)) )
                   (before ?x ?y)))

Notice the biconditional, which makes this rather a strong claim;in particular, makes it
inconsistent with the density assumption. (If the biconditional is replaced with a simple
forward conditional then the theory is consistent with density, but then this axiom cannot be
regarded as a definition of before.) Transitivity now follows from properties of sequences.
Irreflexivity however is not trivial: it essentially asserts that there are no 'null' actions.
Backward-infinity  must be rejected. Forward-infinity can be added, but it is consistent only
when the preconditions are such that it is always possible to apply an action. (This would be
satisfied, for example, by having two actions each of which undoes the effect of the other.)

3.4  Variations

Essentially the same ideas can be expressed in different ways.

a. Cohistorical (replaces 3a/b)

Cohistorical is a chained relation meaning  'on the same time-line':
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(defrelation cohistorical (?x ?y) :=
(and
(<=> (cohistorical ?x ?y)

(or(= ?x ?y)(before ?x ?y)(before ?y ?x)) )
(<=> (cohistorical ?x ?y @l)

 (and (cohistorical ?x ?y) (cohistorical ?y @l)))

The linearity axiom can then be expressed more neatly  by :

(forall(?x ?y)(cohistorical ?x ?y)))

and the tree axiom for branching time by

(forall (?x ?y ?z)(=> (and (before ?y ?x) (before ?z ?x))
(cohistorical ?y ?z)))

b. Timelines

Still another variation introduces timelines explicitly.

We use a relation  on  between a timepoint and a timeline.

;;on-Timeline-1
(forall (?x ?y)(=> (timepoint ?x ?y)
        (<=>
         (exists (?h) (and (timeline ?h)(on ?x ?h) (on ?y ?h)))
         (or (= ?x ?y) (before ?x ?y) (before ?y ?x)) )))

Now, to assert linearity we can just claim that timelines do not overlap:

;;on-Timeline-2
(forall (?h ?k)
        (=> (and (timeline ?h ?k)(exists (?x)
                   (and (timepoint ?x)(on ?x ?h) (on ?x ?k)))
            (= ?h ?k) ))

This allows several timelines to exist, but they can have no connection to one another.  We can
capture the branching structures by insisting that overlapping is only possible in the past:

;;on-Timeline-3
(forall (?h ?k ?x)
        (=>  (and (timeline ?h ?k)(timepoint ?x)(on ?x ?h) (on ?x ?k))
             (forall (?y )(=> (timepoint ?y)
                     (=>(before ?y ?x)
                        (<=>(on ?x ?h) (on ?y ?k))
                        ))
                     )
             ))

 Several authors have argued that since time itself is linear,  the apparent branching of
alternative futures should be thought of as just one kind of hypothetical reasoning about
alternatives, having no particular connection with time. The right way to think of the
branching futures axioms, on this view, would be as alternative world-lines in which only the
future is allowed to vary, presumably on the grounds that less is known about it than about the
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past.  This intuition can be described reasonably well here by distinguishing two kinds of
existential claim. A quantification over a timeline represents a claim of possibility, but  a
quantification over a timepoint within a timeline is a temporal statement.

c.  tick-tock

Discrete time can be explicitly identified with the integers by assuming a function tick  and its
inverse tickof:

;;TT-syntax
(and (forall (?n)
             (<=> (integer ?n)
                  (timepoint (tick ?n))
                  (forall (?x) (<=> (timepoint ?x)
                                    (integer (tickof ?x)) )))))

;;tickof-TT
(and (forall (?x) (= ?x (tick (tickof ?x)))
             (forall (?n) (= ?n (tickof (tick ?n)))  )))

The discreteness axiom follows from this  (by identifying the ?y variables with (tick n-1) and
(tick n+1)), and the 'infinity' axioms can obviously be omitted.  The useful functions  next and
before can be defined:

;;next-TT
(defunction next (?x) := (tick (+ 1
                                     (tickof ?x))))

;;before-TT
(forall (?x ?y) (<=> (before ?x ?y)
                     (< (tickof ?x) (tickof ?y))))

and the earlier ordering can be defined using the conventional arithmetic vocabulary in the
obvious way:

  (forall (?x ?y)(<=> (before ?x ?y)
                      (lessthan (tickof ?x)(tickof ?y))))

Models

This style of axiomatisation depends crucially upon the arithmetical terms 'integer' ,
'plus' and 'lessthan'. If we take the meaning of these to be independently established,
then the only models of the tick-tock language are isomorphic to the integers, ie standard
models. While there is no first-order theory which can make such a guarantee, writers of
axioms often simply assume that such language is available.

If we do not make this assumption, then of course many nonstandard models exist.

Some apparently unimportant, but potentially confusing, variations are possible between
different conventions for how intervals are described in terms of 'ticks'.  The pair
<tick(n),tick(m)> can be thought of as identifying an interval in at least three different
ways, as shown in figure 1. The first thinks of the interval as containing these as its end-
ticks, so that the intervals <...,tick(m)> and <tick(m+1),...> meet one another with no
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space between. The second thinks of tick as identifying the spaces between  atomic
moments of time, so that the intervals  <...,tick(m)> and <tick(m),...> meet one another.
We will use this second convention.

However,  these axioms are also consistent with the idea that a timepoint is an 'atomic'
interval, by using the  third convention illustrated, where an interval is identified by its
last time-tick, so that the interval would be described as  <tick(n-1),tick(m)>.  In the
first case, the interval <tick(m),tick(m)> contains a single clocktick; in the second and
third cases such a construction is meaningless, and the single-tick moment would be
described as   <tick(m-1),tick(m)>.  The difference between the second and third cases
corresponds to the difference between thinking of timepoints as lying between moments, or
as being atomic moments themselves. Much of the literature on temporal databases fails
to distinguish between timepoints and moments, using the term “instant”ambiguously for
both.  As we show later, there is a coherent theory which supports this ambiguity, but it
is not consistent with conventional real analysis.

mn

mn

mn

                Figure 1.    Three ways to label end-ticks



4. Interval theories

The axioms in this chapter all quantify over intervals of time. Intervals are not totally
ordered, and a wide variety of relationships  might hold between two intervals even if
we assume, as I usually will in this section, that time is linearly ordered. Allen (1984)
lists thirteen relations; equality and the following six plus their inverses (ie with
arguments reversed)  precedes, meets, overlaps, starts, finishes  and during.   This is often
taken to be a standard set, but we will also consider theories which use subsets of these
and which use different sets of relations.  Any relation between intervals (on the line) can
be defined in terms of these six, but smaller sets also suffice to define them all. We will
give a theory expressed entirely in terms of meets within which all the relations can be
defined, for example.  These thirteen relations are all the relations which completely
specify the relative orderings of the endpoints of the intervals. This suggests a way to
define them within the timepoint theories, and we also present a theory based on this
intuition.

The distinction between dense and discrete time also runs through these theories. Most of
them can be extended by axioms which restrict to one or the other case, but they are also
often consistent with the idea that time is dense in some places and discrete in others.

4.1 Intervals as information

An interval might be thought of as giving partial information about the location of a
point: as an approximation to a point, in a sense.  Two intervals might be sufficiently
distinct that they establish the relative ordering of the points they contain: following
Allen, we will call this relation precedes (although we think of it as more like the
disjunction of his precedes and meets relations.)  On the other hand, one interval might
surround the same point as another but more precisely; let us call this finer. Both are
orderings, but  finer is partial and precedes is total.

                         

precedes

finer

The following axioms constitute a theory called APPROXIMATE-POINT, since it treats
intervals as approximations to points.
;;AP-Syntax
(chained precedes finer)

;;AP-Trans-1.
(forall (?x ?y ?z) (=> (precedes ?x ?y ?z)
                       (precedes ?x ?z)))

;;AP-Trans-2
(forall (?x ?y ?z) (=> (finer ?x ?y ?z) (finer ?x ?z)))

;;AP-reflex
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(forall (?x) (and (not (precedes ?x ?x)) (finer ?x ?x)))

;;AP-finer-asym
(forall (?x ?y)(=> (finer ?x ?y ?x)
                   (= ?x ?y)))

If two intervals are not clearly separate, then they must somehow intersect. That is,
there must be a shorter interval contained in them both. This leads to the axiom
corresponding to the total-order assumption for points:

(forall(?x ?y)(or (precedes  ?x ?y)
(precedes  ?y ?x)
(exists (?z)(and (finer  ?z ?x)

(finer  ?z ?y)))
))

It is easier to state this using an intermediate concept of ‘not clearly distinguishable from’, or
ncdf:

;;AP-ncdf
(defrelation ncdf (?x ?y) :=
  (exists (?z) (and (finer ?z ?x) (finer ?z ?y))))

ncdf plays the role here that equality does in the linear-point theory (which might be called
an exact-point theory):

;;AP-orthogonal-1
(forall (?x ?y)
        (or (ncdf ?x ?y) (precedes ?x ?y) (precedes ?y ?x)))

Comparing this with before-LP-linear shows how intervals can be interpreted
naturally as approximations to points.

The relation ncdf is not transitive,  since (ncdf a b) and (ncdf b c)  are consistent
with (precedes a c):

                            

a

b

c

However, under these circumstances there must be two subintervals  e  and  f    of   b such
that (precedes e f), ie the overlapping interval can be separated into two
subintervals which are order-distinguishable.

We need a few more axioms which establish the connection between precedes and
finer :

;;AP-orthogonal-2
(forall (?x ?y) (not (and (finer ?x ?y) (precedes ?x ?y))))

;;AP-separation
(forall (?x ?y ?z) (=>
                    (and  (finer ?x ?y)
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                          (precedes ?y ?z))
                    (precedes ?x ?z) )
        )

It now follows that the disjunction in  AP-orthogonal   is exclusive: for if (finer ?z
?x)  and  (precedes ?x ?y), then (precedes ?z ?y)  by  separation;  but (finer
?z ?y), contradicting  the second orthogonality condition.

Notice that of Allen's relations, precedes, overlaps , and during are the only ones which
do not specify that two endpoints are identical, so we might expect them to correspond to
these relations. Following the claim that we can only have approximate information, let
us say that  meets, start,  and finish are always false.  Then we could read ncdf as
meaning the disjunction of equality and the relations {o,d,di,oi}.

The infinite extension of the timeline can be asserted in the obvious way:

;;AP-infinite-past
(forall (?x) (exists (?y) (precedes ?y ?x)))

;;AP-infinite-future
(forall (?x) (exists (?y) (precedes ?x ?y)))

However, this still does not guarantee that any large intervals exist.  For example, the
set of all rational intervals less than unit length would satisfy the axioms so far. One
way to assert this is to claim explicitly that there is an interval which is less precise
than any two intervals:

;;AP-large
(forall (?x ?y) (exists (?z) (and (finer ?x ?z) (finer ?y ?z))))

Models

This theory, in spite of its claims to infinite extension, can be
straightforwardly interpreted as being entirely about the open subintervals of
the unit real interval. The axioms guarantee that there there will always be a
future, but they say nothing about how long that future may last. This can only
be achieved by talking about the durations of intervals, as in section 6.

Density, which in a sense is the opposite of AP-large, is also straightforward:

;;AP-dense
(forall (?x) (exists (?y) (and (finer ?y ?x) (not (finer ?x ?y)))))

Although this way to describe density is fairly standard, its practical utility is
not so obvious. The axiom rules out non-dense models by insisting that finer and
finer distinctions must be possible. If we skolemise this and think of it
computationally, it can be interpreted as saying that finer measurements are
always possible.  In practice this is not usually the case, and there is a definite
limit to the precision with which measurements can be made, a 'grain size' past
which it is not possible to discriminate separate points; or, equivalently, a size
below which intervals seem like points. We could just say that the world is
therefore 'really' discrete, as is usually done in temporal databases, where
times are usually reckoned as integer counts of a clock-tick (Snodgrass et al
1994). But this is unsatisfactory for several reasons. We would like to be able to
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work with the assumption of density up to a point, as it were; and second,
discreteness, as it is usually  described, actually is too rigid. For example, it is
quite possible for two clocks, both at our limits of discernment, to be beating out
of phase with each other; but this is impossible if time itself is reckoned to be
discrete.)

Anyway, its about the only apple in the shop, so we will adopt it as the density axiom.
Given this, the Allen relation of meets can be defined using the idea that the meeting
place can be contained in finer and finer intervals.  If two intervals meet, and a third
overlaps the meetingpoint, then if the line is dense it is always possible to find a
subinterval which also overlaps that point and hence is  notclearlydistinguishablefrom
both the touching intervals:

               

.

.

.

;;meets-AP-dense
(defrelation meets (?x ?y) :=
             (and (precedes ?x ?y)
                  (forall (?z)
                          (=> (ncdf ?x ?z ?y)
                              (exists (?u)
                                      (and (finer ?u ?z)
                                           (ncdf ?x ?u ?y)))))))

Discreteness can be defined by following the intuitions behind those in the point axioms.
First define a notion of an atomic clock-tick:

;;moment-ADP
(defrelation moment (?x) :=
             (not (exists (?y) (and (finer ?y ?x)
                                    (not (= ?x ?y))) )))

or equivalently

(defrelation moment (?x) := (forall (?y)(=>(finer  ?y ?x)
 (= ?x ?y)) ))

Discreteness could now be stated by the claim that all intervals have a next moment and
a previous moment, following the definitions in the linear-point case; if, that is, we could
express 'meets'.  To simply assert that there is a next interval, which works for point
orderings, is not enough here, as this is true even on the rational line. The definition given
for the dense case does not work here, but a simpler alternative is available:

;;meets-ADP-discrete
(defrelation meets (?x ?y) :=
             (and (precedes ?x ?y)
                  (not (exists (?z) (precedes ?x ?z ?y))) ))
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And now we can state discreteness by

;;ADP-discrete
(forall (?x)
        (and (exists (?y) (and (meets ?x ?y) (moment ?y)))
             (exists (?y) (and (meets ?y ?x) (moment ?y)))))

Models

Open intervals on the rational line Q  or the real line  R  are probably the most
intuitive models.  The axioms do not distinguish between open and closed
intervals, and can be interpreted in either way. For example, consider the
universe of all open rational intervals and define precedes in the obvious way
by  (a,b) precedes (c,d) just when b is less than or equal to c, and finer as the
weak subinterval relation.  The same kind of nonstandard orderings (Q ! Q , ie Q
copies of Q, etc.) are also models here, and for the same reason. They now take on
some extra style, since there are now intervals which span entire copies of the
rational line. In the nonstandard models there are also special nonstandard
intervals which do not have endpoints, such as the interval in  Q ! Q  consisting
of all rationals <A,b>  for some fixed A.

AP does not requre all set-theoretic intervals to be in the universe, however. For
example,  it is satisfied on the integers. Indeed, a model of AP can be made from
any model of the point theories by selecting any infinite subset E of points, and
letting the universe of intervals be all pairs of points <a,b> with a,b " E and a
before b. Then two intervals meet just when they share an endpoint, and moments
exist wherever E is not dense.

4.2  Intervals meeting in the glass continuum

Returning now to the idea of the continuum as consisting of intervals which meet at
points, we  assume only a single relation, meets, which is chained but not transitive.
This theories can be regarded as axiomatisations of the intuition of the glass continuum.

First we specify that when two timeintervals meet defines a definite temporal location.
This axiom ‘ties together’ the various ways a meetingplace of several timeintervals
could be specified.

;;IM-syntax
(predicative timeinterval)

;;meets-IM-place
(forall (?i ?j ?k ?m)
        (=> (and (meets ?i ?k) (meets ?j ?k) (meets ?i ?m))
            (meets ?j ?m)  ))
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i

j

k

m

Time is infinite:

;;meets-IM-infinity
(forall (?i) (exists (?j ?k) (meets ?j ?i ?k)))

Until now this has been an essentially arbitrary assumption, but here it takes on extra
importance since proofs often need those extra intervals to nail down the position of a
meeting-point. Notice however that being infinite, as noted earlier, does not guarantee
infinite duration unless further assumptions are made.

That time is ordered can be stated by following the intuition that a meetingplace is an
endpoint, and insisting that these points be ordered:

;;meets-IM-total-order
(forall (?i ?j ?k ?m)
        (=> (and (meets ?i ?j) (meets ?k ?l))
            (or (meets ?i ?l)
                (exists (?n) (or (meets ?i ?n ?l)
                                 (meets ?k ?n ?j) ))
                )))

If the 'or' here were exclusive disjunction this would suffice, but we need to add the
following to prevent time becoming circular:

;;meets-IM-line
(forall (?i ?j) (not (meets ?i ?j ?i)))

The transitivity of the timeorder corresponds to the assumption that two meeting
intervals form a single larger interval:

(forall (?i ?j ?k ?m)(=> (meets ?i ?j ?k ?m)
(exists (?n)(meets ?i ?n ?m)) ))

It is often convenient to replace this by its skolem form, using an explicit addition function
on intervals:

(deffunction plus
(forall (?i ?j ?k ?m) (<=> (meets ?i ?j ?k ?m)
                           (meets ?i (plus ?j ?k) ?m)
                           ))
)

(This is not a logical definition as it does not specify a value for (plus a b) when a and
b do not meet.)
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This provides a neat way to define the notion of a  moment:

;;moment-IM
(defrelation moment (?i) :=
  (forall (?j ?k) (not (= ?i (plus ?j ?k)))
   ))

These axioms constitute a small but surprisingly powerful theory within which all other
binary temporal relations on intervals can be defined.

Density and discreteness can be defined in obvious ways:

;;IM-dense
(forall (?i) (not (moment ?i)))

;;IM-discrete
(forall (?i) (and
              (exists (?j)
                      (and (meets ?i ?j) (moment ?j)))
              (exists (?j)
                      (and (meets ?j ?i) (moment ?j)))
              ))

Models

These axioms have models which reflect several of the intuitions which
motivate the glass continuum, all of which can be regarded as in some sense
“standard” models, although they are not mutually consistent. First consider
the dense case.

One model interprets intervals as open connected subsets of the rational line Q
(ie open intervals in the conventional mathematical sense of 'interval'),
asserts that (a,b) meets (c,d) just when b=c, and defines plus as the interior
of the set-theoretic union of the closures of the intervals being added
together.  Notice then that the sum of two intervals contains the point where
they meet. In general, if more complex operations are defined, they are
modelled by always taking the interior of the corresponding set-theoretic
operation applied to the closures of the arguments. The intersection of two
meeting intervals is always the interior of a single point, ie empty; so two
meeting intervals are disjoint.

This model amounts to a response to the intuitive puzzle discussed earlier
which says that the point of division is in neither half of the split interval,
but just somehow vanishes when they are considered seperately.

Alternatively, a dual model is provided by closed connected subsets of Q,
with subsets meeting just when they share an endpoint, and the sum of two
intervals being defined to be the closure of the set-theoretic union of their
interiors.  This means that two intervals which meet share the meeting
point, but their interval-overlap is the closure of the interior of a singleton,
ie the empty set. Thus there is no shared interval to play the role of  ?n  in
the definition of overlap.
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This answers the puzzle by saying that the point of division is in both
halves, but still insists that the two halves have an empty intersection. (The
point might be thought of as identifying the surfaces of the two pieces of
glass filament, which were in the same place before the break.)

A third way to model this theory thinks of every point on the line as having
two halves, one facing to the past and one to the future. Suppose we have two
distinguished copies of Q, and write <a| for a member of one copy and |a> for
the other: call these the past and future “halves” of the timepoint <a|a>. An
interval denotes a pair <a|b> where a is less than b;  <a|b> meets <b|c>.
The meeting point  <b|b> is not an interval and is therefore “invisible”to the
theory. While this may seem unnecessarily baroque,  it supports the common
naive intuition, when faced with the midpoint puzzle, that the midpoint
itself must somehow be divided into two equal parts.

Note that these are all different from the standard model for the point
continuum, in which a closed interval can only  meet an open interval. They
all refuse to distinguish between two kinds of interval, for example.

These theories can also be interpreted as referring to the point continuum,
however.  For example, one model is provided by the set of semiclosed
rational intervals (a,b]  where  (a,b] meets (b,c]. Here the meeting-point
clearly belongs to the first interval, and a timeinterval is interpreted
directly as a mathematical interval.

Nonstandard models analogous to the nonstandard models of the point
ordering theories also exist, of course. In fact, any model of a point-ordering
theory can be extended to a model of the corresponding (discrete or dense)
interval-meeting theory by defining intervals, and the meets relation, in
any one of the three ways just described.

Analogous models of the discrete theory can be constructed on the integers, but
here simpler models are possible. One defines meets as the relation between
[n,m] and [m+1,k].  Here integers label  moments [n,n], and meeting-points
have to be thought of as between integers. Another model consists of the
integer intervals [n,m] with n < m and defines meets as the relation between
[n,m] and [m,k]; here integers label points and a moment is an interval [n,
n+1].  A nonstandard model here might be provided by Q copies of N, which,
as Van Benthem points out, is “locally” discrete even though having a dense
global structure.

Models of the basic theory can consist of moments inserted into other regions
of density. Almost any combination is possible: in particular, nonstandard
orderings  such as Q followed by N, or Q with several copies of N inserted into
i t .

One class is of special interest, which I will call point-moment models.
Consider a continuous interpretation such as Q or R  with some selected subset
M of isolated points (that is,  for any p,q" M, there must be a point r with p <
r < q), and define an interval as a pair <a,a> where a " M,  or <a,b> when
a<b ; and meets be true of <a,b> and <b,b> (and of <b,b> and <b,c>)  when b
" M, but of <a,b> and <b,c> otherwise.  M can be any subset of isolated points ;
it can be finite or infinite, and its members can be arbitrarily close to one
another. Moments are identified by the members of M.
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In such a model, a moment is being interpreted as a point, which is possible
precisely because a moment has no internal structure. Point-moment models
mix together some aspects of density and some of discreteness, so not
surprisingly they  are not models of either of the extended theories. (Not of
density because  moments exist, and not of discreteness because intervals with
endpoints not in M – which must exist since M is isolated – do not satisfy the
discreteness axiom.)  These models are discussed further in section 5.3.1.

Constructing points in models of the intervals.

Since this theory is so firmly based on the concept of an interval, it may be
surprising that any model of it contains things that can be regarded as timepoints.
This is less trivial than it sounds, since in many models mathematical points (eg
rational numbers) are not suitable interpretations of timepoints, especially in
models based on the glass continuum. The interest of this result is that these
theories are sometimes claimed to be ‘point-free’, in the sense that they are
described purely in terms of intervals sui generis, rather than considering intervals
as being defined by endpoints or consisting of sets of points. But such a claim has to
taken with caution, since it is always possible to interpret this theory as talking
about intervals constructed from points.

Suppose M is any model of these axioms with universe (of intervals) U, and
consider pairs  <B,A> (for ‘Before’ and ‘After’ ) of subsets of U with the property
that every member of B meets every member of A; call such a pair a focus. The idea
here is that a focus locates the meeting-point. Suppose a focus is maximal when the
sets B, A are as large as possible, so that B contains every interval in U that meets
a member of A, and vice versa. Then maximal foci (called ‘nests’ in Hayes & Allen
1987) can serve as points. The ordering relation before of section 3.1 can be defined
thus:  <B1,A1> is before <B2,A2> just when A1 #B2 is nonempty.  The interval in
the intersection is the interval between the points:

'point' B'point' A
interval [A,B] 

The function beginof from intervals to points is defined by: (beginof  i) is the point
<B,A> with i "A; similarly for endof but i " B.  That these are unique follows from
the axioms and the assumption of maximality.  It is now straightforward to show
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that with these interpretations, all the axioms of the linear point theory LP and
all the interval-endpoint definitions given below are satisfied. Thus, any model of
the interval-meeting axioms can be interpreted also a model of LP . This works
equally well for  “nonstandard” models.

This filter construction, originally due to A. N. Whitehead, may seem unintuitive:
a point is very small, but these maximal foci are very large. But when one considers
that the role of the focus is to isolate a point as precisely as possible, then the idea
that it might take an infinite amount of information to isolate something infinitely
small makes the filter seem somewhat more compelling.

4.3  Thirteen  Relations

Probably the most familiar temporal theory is often described as being based on the
thirteen relations described earlier. In this section I will use the compact notation used by
Allen (1984) and extended by Freska(1992) where each relation is denoted by its intial
letter , followed by ‘i’ to indicate the inverse.

The thirteen relations are an exhaustive and mutually exclusive set:

;;TT-list
(forall (?x ?y)
    (=> (timeinterval ?x ?y)
        (xor (p ?x ?y)
             (o ?x ?y)
             (m ?x ?y)
             (s ?x ?y)
             (d ?x ?y)
             (f ?x ?y)
             (= ?x ?y)
             (fi ?x ?y)
             (di ?x ?y)
             (si ?x ?y)
             (mi ?x ?y)
             (oi ?x ?y)
             (pi ?x ?y) )
     ))

Notice the use of exclusive-or here. This axiom can be written rather more tediously without it.

;;TT-inverses
(forall (?x ?y)
        (and (<=> (p ?x ?y) (pi ?y ?x))
             (<=> (m ?x ?y) (mi ?y ?x))
             (<=> (o ?x ?y) (oi ?y ?x))
             (<=> (s ?x ?y) (si ?y ?x))
             (<=> (d ?x ?y) (di ?y ?x))
             (<=> (f ?x ?y) (fi ?y ?x)) )
        )

The various relations between these are often, following Allen, summed up in a
transitivity table. This 13 x 13 array gives the set of possible relations that can hold
between x and z when one relation holds between x and y and the second between y and z.
We summarise the table here as a variadic relation  ttable on relations. The first two
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are the table coordinates, the rest are the possible entries at that point. This is expressed
in the following second-order assertions, written here in pseudo-KIF notation:

4.3.3 (forall (?r ?s ?e @l)(<=>
(ttable ?r ?s ?e @l)
(forall (?x ?y ?z)(=>(and (?r ?x ?y)(?s ?y ?z))

   (disjoin ?x ?z ?e @l) )) ))

4.3.4 (defrelation disjoin (?x ?z ?e @l) :=
(or (?e ?x ?y)

(disjoin ?x ?y @l))
)

Unlike the Dedekind axiom discussed earlier, however, these are not essentially second-
order quantifiers. These ‘second-order’ variables are really only schematic placeholders
for first-order relations: indeed, for our purposes, they need only refer to the twenty-six
realtions in our current list. These axioms can therefore be quite reasonably transcribed
into KIF by using the ‘holds’ relation between a relation and its arguments:

;;table-TT
(defrelation ttable (?r ?s ?e @l) :=
         (forall (?x ?y ?z) (=> (and (holds ?r ?x ?y)
                                     (holds ?s ?y ?z))
                                (disjoin ?x ?z ?e @l) )) ))

;;disjoin-TT
(defrelation disjoin (?x ?z ?e @l) :=
             (or (holds ?e ?x ?y)
                 (disjoin ?x ?y @l))))

 The table is then summarised in the following rather long conjunction:

(and  (ttable p p p)
      (ttable p m p)
      (ttable p o p)
      (ttable p fi p)
      (ttable p di p)
      (ttable p si p)
      (ttable p s p)
      (ttable m p p)
      (ttable m m p)
      (ttable m o p)
      (ttable m fi p)
      (ttable m di p)
      (ttable o p p)
      (ttable o m p)
      (ttable fi p p)
      (ttable p d p m o s d)
      (ttable p d p m o s d)
      (ttable p f p m o s d)
      (ttable p oi p m o s d)
      (ttable p mi p m o s d)
      (ttable m si m)
      (ttable m s m)
      (ttable m d o s d)
      (ttable m f o s d)
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      (ttable m oi o s d)
      (ttable o d o s d)
      (ttable o d o s d)
      (ttable fi d o s d)
      (ttable m mi fi = f)
      (ttable o p p)
      (ttable o m p)
      (ttable o o p m o)
      (ttable o fi p m o)
      (ttable o di p o m fi di)
      (ttable o si m fi di)
      (ttable o s o)
      (ttable fi s o)
      (ttable o oi o fi di si = s d f oi)
      (ttable fi m m)
      (ttable fi o o)
      (ttable fi di di)
      (ttable fi si di)
      (ttable di fi di)
      (ttable di di di)
      (ttable di si di)
      (ttable si fi di)
      (ttable si di di)
      (ttable fi f f = fi)
      (ttable di p p m o fi di)
      (ttable si p p m o fi di)
      (ttable si s si = s)
      (ttable s p p)
      (ttable s m p)
      (ttable d p p)
      (ttable d m p)
      (ttable f p p)
      (ttable s o p m o)
      (ttable s fi p m o)
      (ttable s di p m o fi di)
      (ttable s si si = s)
      (ttable d o p m o s d)
      (ttable d fi p m o s d)
      (ttable f m m)
      (ttable f o o s d)
      (ttable f fi f = fi)
      (ttable oi p p m o fi di)
      (ttable mi p p m o fi di)
      (ttable oi m o fi di)
      (ttable oi o o fi di si = s d f oi)
      (ttable mi m si = s)
      )

(This ordering tries to illustrate the natural grouping of entries in the table.  Some entries
are omitted: in particular, those involving equality follow by ordinary logical principles;
some entries provide no information; and the entire table is symmetric so only half of it is
necessary.)  More discussion of the topological structure of the table can be found in
(Freska 1992), who develops a very intuitive iconic  notation.

The table can be thought of as defining an algebra on subsets of the set AR =
{p,m,o,s,d,f,fi,di,si,oi,mi,pi,=} of thirteen relation names,. Temporal
reasoning can then be performed by computing multiplication in this algebra, where an
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empty string indicates a contradiction.   This has been a very influential technique for
interval reasoning. Vilain and Kautz (1986) have shown that computing closure in this
algebra is an NP-complete problem in general, although useful polynomial time
algorithms have been developed for special cases (Vilain, Kautz & Van Beek 1989)

This algebraic approach to interval reasoning is rather different in spirit than the
simple “reduction to endpoint” definitions given below. For example, consider the
relationship between two intervals ?i and ?j  which is that the first begins before the
second ends, ie (before (beginof ?i)(endof ?j)) . To express this in the algebraic
style one must consider which of the thirteen relationships is consistent with this
arrangement and list them all explicitly.  The answer is  {p, m, o, s, d, =, fi,
si, fi, di, oi},  ie all eleven of these are consistent with that constraint on the
endpoints. This awkwardness of the disjunctive-list notation is due to the fact that each
particular interval relation commits itself to the relative positions of both endpoints, so
a lack of commitment can only be expressed by a disjunction.

Several entries recur in the table several times: the sequences (p m o fi di) and (o
s d f = fi di si oi) for example. Freska notes that several of these have natural
interpretations as weaker constraints on interval endpoints. For example, (p m o fi
di) is the relation of beginning earlier than, with no constraint on the relations between
the ends of the intervals; while the second disjunction is the relation  ncdf  in section 4.1.
The thirteen relations can be defined from these by conjunction rather than disjunction.
(For example, if we also define exact to mean that the two intervals’ endpoints are
somewhere exactly aligned (this is (m s f = si fi mi)), then meets is
beginsearlierthan and not ncdf and exact.  ) This suggests the possibility of finding such a
set of weaker relations which is also closed under transitivity, which would greatly
simplify the task of computing transitive closure.

One might have hoped for a simpler summary of the relations between such an
intuitively acceptable set of temporal relationships.  They can be appropriately defined
in simpler theories.  A theory  needs to provide enough axioms to conclude that these
relations are an exhaustive and exclusive set of interval relations, and to derive the
transitivity table. We give two ways  of doing this.

4.4 Thirteen relations in terms of meets

These definitions use one basic formal trick, which is to force two intervals to have a
common endpoint by hypothesising that a third interval exists which meets them both,
or which they both meet.  This is rather like the familiar juggling feat of holding boxes
in the air by clamping them between two boxes held in the hands.

The intuitive content of these definitions is probably best shown by drawing the linear
patterns of intervals named in the quantifiers. Overlaps is the most complicated case.

;;precedes-IM
(defrelation precedes (?i ?j) :=
             (exists (?k) (meets ?i ?k ?j)))

;;overlaps-IM
(defrelation overlaps (?i ?j) :=
                  (exists (?k ?m ?n ?o ?p)
                     (and (meets ?k ?m ?n ?o ?p)
                          (meets ?m ?j ?p)
                          (meets ?k ?i ?o) )))
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;;starts-IM
(defrelation starts (?i ?j) :=
             (exists (?k ?m ?n)
                     (and (meets ?k ?i ?m ?n)
                          (meets ?k ?j ?n) )))

;;during-IM
(defrelation during (?i ?j) :=
             (exists (?k ?m ?n ?o)
                     (and (meets ?k ?m ?i ?n ?o)
                          (meets ?k ?j ?o) )))

;;finishes-IM
(defrelation finishes ( ?i ?j) :=
             (exists (?k ?m ?n)
                     (and (meets ?k ?m ?i ?n)
                          (meets ?k ?j ?n) )))

Allen & Hayes (1987) show how the entire 13 x 13 transitivity table of these relations
and their inverses can be derived within the theory of ‘meeting’ described earlier plus
these definitions.
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5. Points and Intervals

In this section we consider putting together the ideas of point and interval into combined
theories.

5.1 Thirteen relations in terms of endpoints

The thirteen relations can be defined directly, following their intuitive meanings, by
using the point ordering  relation  before  applied to the endpoints of the intervals. To
do this we introduce two functions   beginof  and  endof  from intervals to points.  The
inverse function between is also useful. These axioms and definitions, added to the
theory LINEAR-POINT, constitute a theory we will call ENDPOINTS:

;;beginof-endof-EP
(forall (?i)(=> (timeinterval ?i)
                       (and (timepoint (beginof ?i) (endof ?i))
                            (before (beginof ?i) (endof ?i))
                       )
        ))

;;between-EP
(forall (?p ?q)(<=> (before ?p ?q)
                   (and (= ?p (beginof (between ?p ?q)))
                        (= ?q (endof (between ?p ?q)))))))

;;precedes-EP
(defrelation precedes (?i ?j):=
             (and (timeinterval ?i ?j)
                  (before (endof ?i) (beginof ?j))))

;;overlaps-EP
(defrelation overlaps (?i ?j):=
             (and (timeinterval ?i ?j)
                  (before (beginof ?i) (beginof ?j) (endof i))))

;;starts-EP
(defrelation starts (?i ?j):=
         (and (timeinterval ?i ?j)
              (= (beginof ?i) (beginof ?j))
              (before (endof ?i) (endof ?j)) ))
;;
;;during-EP
(defrelation during (?i ?j):=
          (and (timeinterval ?i ?j)
               (before (beginof ?j)
                       (beginof ?i)
                       (endof ?i)
                       (endof ?j)) ))

;;finishes-EP
(defrelation finishes (?i ?j):=
         (and (timeinterval ?i ?j)
              (before (beginof ?j) (beginof ?i))
              (= (endof ?i) (endof ?j)) ))
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The entries in the  transitivity table can be straightforwardly derived within
ENDPOINTS.  However, we can also take these axioms, add them to the theory
INTERVAL-MEETING, and regard  between-EP as a definition of before; and then all
the axioms of LINEAR-POINT are derivable. So this theory provides a kind of bridge
between the point-ordering view of time and the interval-meeting view, from the glass
continuum perspective.

Notice that   beginof-endof-EP  means that there cannot be a single-point interval in
this theory. If we allowed single-point intervals then the transitivity table would no
longer be derivable. For example, it would then be possible to have three intervals such
that I meets J meets K and I meets K.  Moreover, one interval could both meet and start
another.  Later we will consider a variation in which this restriction is removed, and
which reconciles these apparently unintuitive consequences.

Models

All models of LP , including the nonstandard ones, extend immediately to models of
EP by interpreting  intervals in any of the three ways mentioned in section 4.2
above.  These axioms fit most naturally into the glass continuum, since they make
no distinction between open and closed timeintervals; but as noted there, it is
possible to interpret timeintervals as half-closed intervals in the point continuum.

Some care is necessary in considering models over the rationals. We cannot take the
universe to be all rational intervals, since there are rational intervals with no
rational endpoints. The universe of models of EP must be made up from intervals
with rational endpoints. Perhaps not surprisingly, therefore, when we insist that
intervals are attached to their ends, we can only have countably many of them.

5.2   Open and closed intervals: the point continuum

Although the thirteen relations can be interpreted in the point continuum, difficulties
arise if we combine the  mathematical intuitions from real analysis with these axioms.
For example, Galton (1990) argues that Allen’s axiom for ‘property negation’, when
applied to a smoothly moving body, seem to imply that it is never at any position (since
it is never at any position for a whole subinterval,  (pnot (at ?x)) is always true
throughout any interval).  This argument however assumes that  “interval”means
mathematical interval, and indeed Galton goes on to develop a variation on Allen’s
theory which is as directly interpretable in the point continuum as Allen’s is in the glass
continuum. We give a variation here which is equally expressive but somewhat less
complex.

Galton distinguishes two kinds of proposition: a state of position  and a state of motion.
Paradigmatic examples are respectively, a ball being at rest and a ball being in motion.
Galton however is careful to distinguish being at rest from having zero velocity. For
example, a ball tossed in the air has zero velocity at the single timepoint when it
reaches the top of its parabola, but it is not at rest there; this is a state of motion but not
of position.

Galton gives many axioms relating states of position and motion, using a complicated
variation of the ‘holds’ notation discussed in section 2  earlier. However, since states of
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position are those things that can hold true during a closed interval, while states of
motion must hold during open intervals, the two classes of proposition must be exclusive,
and to distinguish them it is sufficient to distinguish the kinds of interval during  which
they hold. If we further think of an interval as consisting of the points it contains, we can
easily define an equivalent language which has as primitive just the notion of holds at
a point.  As described earlier,  with this simple interpretation  ‘holds’ can be
transparently removed from the language, and such axioms as

* * (<=> (holds-at (not ?p) ?i) (not (holds-at ?p ?i)) )

become tautologous.

The distinction between states of motion and position can then be reinterpreted as
differences between different kinds of relation. Some can only be relativised to open
intervals, others only to closed. For example, the property of  moving  is taken to be a
relation between an object and a closed interval, while resting becomes a relation to an
open interval. When something starts to move, the two intervals of its resting and moving
meet, but the latter contains the meeting point, where the motion has begun but the
velocity is zero. For the old example of the light, either one or the other of being lit and
not being lit has to be a state of motion; or else, perhaps more plausibly, they can both be
states of rest, but then the single meetingpoint is where a special state of motion
predicate –  goingout or comingon  , or perhaps simply changingstate – is true.

There are several ways to obtain a theory for open and closed intervals.  One method is to
define intervals as sets of points, and use set-theoretic comprehension principles to establish
that appropriate intervals exist. We do not develop this standard mathematical approach
here, but give selfcontained axiom systems which can be connected to set theory later, if
required. There are in any case some complications in thinking of intervals literally as sets of
points.

The most straightforward way is probably to talk of endpoints, as in the theory EP. I will use
the relation  in  between a point and a containing interval (this is not the same as during) and
open and closed as predicative relations on intervals.

;;PC-in-syntax
(forall (?x ?y)(=> (in ?x ?y)
                   (and (timepoint ?x)
                        (timeinterval ?y)) ))

;;open-close-in-PC
(forall (?i)(=> (timeinterval ?i)
        (or (and (open ?i)
                 (not (closed ?i))
                 (forall (?p)(<=> (in ?p ?i)
                                  (before (beginof ?i) ?p (endof ?i))
                 ))  )
            (and (closed ?i)
                 (not (open ?i))
                 (forall (?p)(<=> (in ?p ?i)
                                  (bbefore (beginof ?i) ?p (endof ?i))
                 ))  ))))

So far nothing establishes that intervals actually exist, but we can assert this directly.

;;begin-end-PC-1
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(forall (?p ?q)(=> (timepoint ?p ?q)
        (or  (before ?q ?p)
             (exists (?i)
                     (and (timeinterval ?i)
                          (closed ?i)
                          (= (beginof ?i) ?p)
                          (= (endof ?i) ?q)
                     )
              ))
        )
)

The rather awkward disjunction here is to allow the case where ?p and ?q are the same point.
The similar axiom for open intervals reads more naturally:

;;begin-end-PC-2
(forall (?p ?q)(=> (timepoint ?p ?q)
        (<=>  (before ?p ?q)
              (exists (?i)
                      (and (timeinterval ?i)
                           (open ?i)
                           (= (beginof ?i) ?p)
                           (= (endof ?i) ?q)
                       )
              ))
        )
)

The  skolem form of this axiom provides the useful function  between from a pair of points to
the open interval between them.

;;between-PC
(defunction between
(forall (?p ?q)(=> (timepoint ?p ?q)
        (<=> (bbefore ?p ?q)
             (and (timeinterval (between ?p ?q))
                  (= ?p (beginof (between ?p ?q))
                  (= ?q (endof (between ?p ?q))  ))))))
)

The biconditional here makes the very strong assumption that every pair of points defines an
interval and vice versa. Weaker “bindings” between interval and points could also be
considered, for example by replacing this by a simple implication, or restricting the quantifier
to a special subset of ‘endpoints’. For example, one might want to consider a dense theory of
points but only allow a discrete universe of intervals, so that some points had no interval
between them. I will not explore such ideas in detail, however.

Every open interval has a closed interval with the same endpoints.  The skolem form of this
statement provides the function closure. This axiom would be trivial in the glass continuum,
but needs to be explicitly stated here:

;;closure-PC
(deffunction closure
(forall (?i)(=> (timeinterval ?i)
        (and  (timeinterval (closure ?i))
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              (closed (closure ?i))
              (= (beginof ?i) (beginof (closure ?i)))
              (= (endof ?i) (endof (closure ?i)))
        )))

)

It follows that  an interval is closed just when it is equal to its own closure, as expected.

A moment is an interval which is as short as possible, ie has no points inside it :

;;moment-PC
(defrelation moment (?i) :=
       (forall (?p)(<=> (in ?p ?i)(or (= ?p (beginof ?i))
                                     (= ?p (endof ?i)) ))))

The definitions of the thirteen relations used in 4.5 above now need to be reconsidered. (As they
were inspired by the glass continuum, this is perhaps not surprising.) Only a closed interval can
meet an open one, and vice versa; and  a subinterval can start or finish only an interval of the
same kind. The concept of being the same kind as, ie  also closed or also open,  or  acoao, will be
useful here:

;;acoao-PC
(defrelation acoao (?i ?j)(=> (timeinterval ?i ?j)
             (or  (and (open ?i) (open ?j))
                  (and (closed ?i) (closed ?j))
                  )))

Then the three cases where endpoints are supposed to be precisely aligned can be
rewritten thus:

;;meets-PC
(defrelation meets (?i ?j) :=
          (=> (timeinterval ?i ?j)
              (and (not (acoao ?i ?j))
                  (= (endof ?i) (beginof ?j)) )))

;;starts-PC
(defrelation starts (?i ?j) :=
         (=> (timeinterval ?i ?j)
             (and  (acoao ?i ?j)
                   (= (beginof ?i) (beginof ?j))
                   (before (endof ?i) (endof ?j))
                   )))

;;finishes-PC
(defrelation finishes (?i ?j) :=
        (=> (timeinterval ?i ?j)
            (and  (acoao ?i ?j)
                  (before (beginof ?j) (beginof ?i))
                  (= (endof ?i) (endof ?j)) )))

The other Allen relations are defined just as in ENDPOINT.

If these axioms are added to the basic point-order theory LINEAR-POINT, the  resulting
theory is a sketch of the usual mathematical account of the rational line or the real continuum.
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It does not have continuity assumptions, however, since these are essentially not first-order.
Whether they are needed is an interesting, and ultimately empirircal question. If this theory
is being used in a scientific or engineering domain then certain consequences of continuity are
certainly useful, and may be essential: notably, for example, the ijntermediate-value theorem
and the existence of solutions to certain classes of equations. However, these can often be stated
directly. In any case, I do not here consider this issue (which goes beyond the narrow question of
temporal effectiveness) in detail.

Two open intervals cannot meet, so if two open intervals  (between a b)and (between b c)
share an endpoint, then there is a single-point closed interval just separating them, so that
(between a b) meets [b,b] meets (between b c).These single-point intervals are
the moments.

Moments are closed, and every closed single-point interval is a moment, as we would
expect. In stark contrast to the axioms in 5.1, these single-point moments are everywhere:
by between-end-PC-1, every point occupies one.  The biconditional in between-end-
PC-2 ensures that a single-point open interval is impossible.

The chief utility of moments until now has been to state a discreteness condition. But
because a moment now can consist of nothing but a point, axioms which assert that
intervals have adjacent moments will be true even in the real line, thus failing
completely to guarantee an underlying discrete structure of seperate time-ticks. We cannot
insist that a moment meet another moment since this is provably impossible; being both
closed, their meeting is excluded by the acoao condition.  The correct way to state density
or discreteness is in terms of points rather than intervals, since the intervals in this
theory are defined by the locations of their endpoints. We can simply add the
appropriate definitions in the extended theories DENSE- or DISCRETE- LINEAR-
POINT.

Models

These axioms have a curious consequence in a discrete model of time, where there
are points p,q ordered by before but with no points between them; therefore
there are open timeintervals (between p q) which contain no timepoints at all.
The discrete timeline consists of these empty open intervals interleaved with
single-point moments containing the timepoints. This rather strange (although
consistent) picture arises from combining two rather different intuitions: the
universal quantifier in 5.2.6 is suggested by a vision of smooth continuity, which
the discreteness axiom explicitly denies.

 This would be a contradiction in a set-theoretic model, where these would all be
the empty set and hence be identical, forcing time to be circular in a particularly
pathological fashion. However, a set-theoretic development would not need
these axioms; and we do not need to identify these empty moments, since they are
distinguishable by their endpoints ( which, being open, they do not contain). For
example, one discrete model of these axioms is provided by the integers where
timepoint is true of the even integers, a timeinterval is a connected sequence
of integers which is open when its ends are odd and closed when they are even,
and meets is simply adjacency. The ‘empty’ open intervals are then the odd
integers.

The density axiom produces more intuitive results, and this extension of the theory
has the usual models. With the density assumption, a moment must contain only a
single point which is both its end and its beginning.



44

Galton’s distinction between states of motion and rest is now simply the distinction
between the kind of interval they can be said to hold during. They both hold-in an
interval just when they hold at all the points in the interval; but if the interval is
closed, then they are a state of motion, and if open, a state of rest. Things that hold-in
single-point moments (as opposed to holding at a point) must therefore be states of
motion.

5.3  The Vector Continuum:  placing points in glass

The different intuitions about the continuum give rise to very different axioms. However, it is
possible to combine some of the most useful features of both of them into a single consistent
framework.

First, we simply add the notion of a point to the description of the glass continuum given in 4.2,
ie the theory INTERVAL-MEETING.  To preserve the intuition, however, the basic relation
between points and intervals is not that of containment – the in relation of 5.1 – but that of a
meeting-point: points are the places where intervals meet. We will express this by a three-
way relation  meets-at between two meeting intervals and a point.

The most natural relation between interval and point is expressed here by the relation
meets-at which is true when a point is the meeting-place of two intervals:

;;VC-syntax-meets-at
(forall (?x ?y ?z)(=>(meets-at ?x ?y ?z)
                     (and (timeinterval ?x ?z) (timepoint ?y))))

;;meets-at-VC
(defrelation meets-at (?i ?p ?j) :=
               (= ?p (endof ?i) (beginof ?j)))

It follows therefore that (meets ?i ?j) if and only if (exists (?p)(meets ?i ?p ?j)).

If we now define the timepoint ordering :

 (defrelation before (?p ?q) :=
          (exists (?i ?j ?k)
               (and (meets-at ?i ?p ?j)(meets-at ?j ?q ?k)))  )

then its properties follow from the axioms of INTERVAL-MEETING: that is, LP can be derived
within IM+these three axioms. (Notice again the importance of the infinity assumption ,
which is now necessary to establish that every interval has endpoints. ) This theory, like
ENDPOINTS, therefore provides a bridge between the point and interval ways of
conceptualising the glass continuum.  To emphasise the point; if we define   beginof and
endof correctly, the definitions of the thirteen relations  in the style of the  interval theory
IM, or that of the endpoint theory EP  become provably equivalent:

(defrelation beginof (?i) := (exists (?j)
                   (meets-at ?j (beginof ?i) ?i)))

(defrelation endof (?i) := (exists (?j)
                   (meets-at ?i (endof ?i) ?j)))
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The resulting theory is still openminded about density or discreteness, and can be pushed in
either direction by adding suitable extension axioms, eg by extending LP or IM.

A more interesting alternative, however, allows the idea of intervals with a direction.  These
will be useful when talking of durations, since it is natural there to think of a negative duration
as a ‘debt’ of time; and it results in a very elegant simplification of many of the axioms,
overcoming some artificial restrictions which have been necessary in order to make the axioms
have the needed conclusions.

Consider the axiom beginof-endof-EP:

(forall (?i)(=> (timeinterval ?i)
                       (and (timepoint (beginof ?i) (endof ?i))
                            (before (beginof ?i) (endof ?i))
                       )
        ))

and consider the effect of weakening it to remove the restriction that the beginning of an
interval is before its end.:

(forall (?i)(=> (timeinterval ?i)
                (timepoint (beginof ?i) (endof ?i))
        ))

This allows intervals with are ‘pointed backwards’ as well as interval with idenical beginning
and endings, ie single-point intervals.  The lack of single-point intervals is a distinct weakness
of the ‘glass continuum’ theories such as ENDPOINTS, compared to the POINT-CONTINUUM,
but this suggests an alternative way to incorporate them.

;;moment-VC
(forall (?x) (<=> (moment ?x)
                  (= (beginof ?x)(endof ?x))))

Here then, an interval is defined by any two points. If the beginning is before the end, then we
will say that the interval is forward, and given any interval we will have a function back
which ‘reflects’ it.

;;forwards-VC
(defrelation forwards (?i) := (before (beginof ?i)(endof ?i)))

;;back-VC
(deffunction back (?i) = (between (endof ?i)(beginof ?i)))

That (back (back ?x)) = ?x then follows from the definition of between in
ENDPOINTS.

Actually this ‘mirror’ analogy is somewhat misleading, since a backward interval should not
be thought of as going backwards in time - time itself does not move, of course - but rather as a
debt of time or an amount owing. For example, a sequence of meeting intervals represents a
longer interval which is their sum; to include a backward interval in such a
sequence would simply be to diminish the total time it represented:
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This is rather like observing that some event is earlier than expected.

Similarly, a single-point interval - a moment - added to another interval should  not affect its
duration at all. There seems now, in fact, to be little distinguish a moment from a timepoint,
other than our insistence that the two categories are disjoint.  The motivation for such an
insistence comes from the  idea that intervals, but not points, are the things during which
propositions are true, or when events happen. This intuition was fundamental to Allen’s
development and has motivated others; and it was precisely this (considered more as a bug
than a feature) which led Galton to explicitly deny the glass continuum intuition and return to
the point continuum.  There seems to be little more than apoint when the ball is motionless at
the top of its parabola, for example.

This all suggests that we take the unusual step of allowing a moment to be both an interval and
a point.  The categories are disjoint everwhere else, but here they overlap:

;;VC-moment
(forall (?x) (<=> (moment ?x)
                  (and (timepoint ?x)
                     (timeinterval ?x))))

Moments now have some interesting properties. Following the axioms in INTERVAL-MEETING
and the definitions in LINEAR-POINT, it is easy to show that a moment meets itself: indeed,
that it meets itself at itself. This seems extremely unintuitive until we observe that any
interval meets its own back-reflection. We can think of a moment  not as the limiting case of two
copies of itself placed one before the other - which is clearly impossible - but rather as the
limiting case of an interval meeting its own reflection:

i i
i

-i

i

??   meets(i,i)      ?? meets(i, -i)  &  i= -i
  



47

It now also follows that if two (nonmomentary) intervals meet at a moment, then they also
meet. This means that a moment can be placed ‘between’ two meeting intervals without
blocking their meeting, in marked contrast to the situation in the point continuum.

In many ways this seems more natural. It allows us to describe a pattern of meeting intervals
without being overly concerned about whether or not the meeting-places are worthy of mention.
Deciding that a meetingplace is a moment (and hence that something can be true there but
nowhere else, as in the tossed ball) would not require massive updating of a set of assertions,
rewriting all the ‘meets’ to be ‘precedes’, re-evaluationg the open/closed status of intervals,
and so forth, but can be transparently added, and is inconsistent only with an explicit denial of
its status as momentary..

This provides the most satisfying framework for describing the glass continuum.  A moment now
is a both a timepoint and a timeinterval. Since it meets other intervals, it can also take part in
the other interval relationships defined in  INTERVAL-MEETING.   It  is (when considered as
a point) both the beginof and endof itself (when considered as an interval).  In some ways
therefore it acts similarly to the one-point intervals in the point continuum. For example, we
could distinguish the interval between two such point-moments from the result of adding them
to its ends, and regard this addition as something like the operation of closure in the point
continuum. But  many intervals need not end in such moments, so ‘closure’ might be rarely
possible: and in any case, these ‘closed’ intervals do not behave any differently than their
‘interiors’ in how they relate to their neighbors. Points here are still not as substantial as they
are in the point continuum, even when given the status of being intervals.

This also fits quite well with the intuition of an interval as giving information about the exact
time of a timepoint. Since a moment is a point, it has no other points within it, hence it is an
interval which identifies a point as precisely as possible. It represents the limits of our
abilities to measure exactly when something happens.  In the dense case, this would seem
naturally to be the point itself.

5.3.1  Approximate-meeting

Another way to motivate this way of describing time comes from the following essentially
model-theoretic argument. Return for the present to the older idea of moment as a shortest
possible interval, but not a point, as described in the theory INTERVAL-MEETING.  Let us say
that two intervals approximately meet if they are separated only by a moment:

;;A
(defrelation ameets (?i ?j):=

(exists (?k)
(and (moment ?k)(meets ?i ?k ?j)) ) )

and then allow this as one way of meeting:

;;B
(defrelation mmeets (?i ?j):=

(or (ameets ?i ?j)(meets ?i ?j)) )

 (The name should suggest a momentary hesitation)  Now,  if we assume that two moments
cannot meet:
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;;C
(forall (?i ?j) (=>

(and (moment ?i)(moment ?j))
(not (meets ?i ?j)) ))

)

then mmeets satisfies the axioms of INTERVAL-MEETING (IM) . That is, if we rewrite the
IM axioms with mmeets in place of meets, the resulting theory – call it AIM – is deducible
within IM + A,B,C.  (Hayes & Allen 1991)

(The reason for the no-meeting requirement can be seen by considering the ‘place’ axiom with
ameets instead of meets. The assumptions allow this to occur:

                                     

i

j

k

m

But now the intervals  j and  m do not even approximately meet, since there are two moments
between them.  If tiny errors are allowed to add up, they become large enough to notice.)

This means that meets  could consistently have been interpreted this way all along (assuming
still that moments cannot meet). Any model of IM + A,B,C is automatically a model for AIM;
and any model of AIM  is also one of IM where meets is sometimes interpreted as ameets.
Therefore  we can merge  the relations meets and  ameets into a single relation without
confusion, retaining all truths.  If we call this combined relation meets, then this amounts to
saying that some meetings can be at moments without violating the theory. The point-moment
models described in section 4.2, in which a subset of points in the model were singled out as
standing for moments, were indeed such interpretations, with the ‘isolation’ of the moment-
points corresponding exactly to the no-meeting axiom C.  The effect of this merging can be
described as identifying  moments with points.

It would be nice if we could simply conjoin all the axioms in INTERVAL-MEETING and
ENDPOINTS, but it is now necessary to adapt some of the earlier axioms slightly, since point-
moments will no longer serve to establish a space between meetingpoints:

;;beginof-endof-VC (generalises EP)
(forall (?i)(=> (timeinterval ?i)
                (and (timepoint (beginof ?i) (endof ?i)))))

;;between-VC (generalises EP)
(forall (?p ?q) (and (= ?p (beginof (between ?p ?q)))
                     (= ?q (endof (between ?p ?q))))))

;;plus-VC
(deffunction plus
(forall (?i ?j)(=>(meets ?i ?j)
                  (= (plus ?i ?j)
                     (between (beginof ?i)(endof ?j)))))
)
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The axioms of INTERVAL-MEETING adapt quite well to the generalisation which
allows backwards and pointlike intervals. For example, the ‘place’ axiom is still true
even when some of the intervals mentioned are backwards:

i

jk

m

The definitions of the Allen relations given in ENDPOINTS work here perfectly well. The
definitions in INTERVAL-MEETING, however, need to be restricted to forward intervals, or
they fail to make the relevant distinctions. Here, the mere existence of an interval is not
sufficient to ensure the past-to-future ordering of its endpoints.
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6.  Durations

A duration is a property of an interval, or equivalently of a pair of points defining the ends of
the interval. Since the duration of a point (including a point-moment) is zero, we can here be
somewhat more careless about the distinctions between different views of the continuum, and
between open and closed intervals. Any theory of duration ought to apply to both views equally
well; and, except where noted, these axioms can be added to any of the earlier theories. The
conclusions can often only be reached in one of the more comprehensive theories, however.  The
distinction between dense and discrete time is often important since in dense time, a moment has
no duration, but in discrete time it must have some.

6.1 Basic properties of durations

It would be acceptable to assume immediately that durations were, say, real numbers; but in the
spirit of the earlier sections I will develop the theory with the minimal assumptions
necessary.  Whatever durations are, some things seem clear. Durations can be compared;
durations can be added together (since the duration of two meeting intervals is the sum of their
durations); there is a zero duration (which is the duration of a point); and finally, clocks
measure duration by counting , so it must be possible to multiply durations by integers. These
three basic assumptions are embodied in the constant zero,  the chained transitive relation
less, and the functions add  and times  used in these axioms.  The type predicate is
timeduration, and duration is a function from intervals to timedurations.

;;DU-syntax
(and (predicative timeduration)
     (forall (?x ?y)(and
                (=> (exist (?z) (= ?z (mult ?x ?y)))
                    (and (integer ?x) (timeduration ?y)))
                (=> (exist (?z) (= ?z (add ?x ?y)))
                    (timeduration ?x ?y))
                (timeduration zero)  ))

;;mult-DU
(deffunction mult
(forall (?d ?n ?m)
        (and
         (= (mult 0 ?d) zero)
         (= (mult 1 ?d) ?d)
         (= (mult (+ ?n ?m) ?d))
            (add (mult ?n ?d) (mult ?m ?d)))
        ))
)

;;add-DU
(deffunction add
(forall (?d ?e @f)
        (and (= (add zero ?d) ?d)
             (= (add ?d ?e) (add ?e ?d))
             (= (add ?d (add ?e @f)) (add (add ?d ?e) @f))))
)

Several different functions satisfy this axiom. Since in general there is no notion of a unit
duration, addition cannot be defined recursively in terms of a successor function.
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;;less-DU
(forall (?d ?e)(<=> (positive ?d)(less ?e (add ?d ?e))))

The relation positive cannot be defined purely in the duration theory, but requires the notion of
a forward interval, which in turn is defined in terms of the basic before relation on timepoints.
Without reference to before, times,and hence timedurations, are completely symmetric with
regard to the direction of time.

;;numberin-DU
(deffunction numberin
(forall  (?d ?e)
         (=>
          (exist (?n)(and (integer ?n) (= (mult ?n ?d) ?e)))
          (= (mult (numberin ?d ?e) ?d) ?e)))
)

Numberin is a useful function when we can be sure that copies of one duration fit exactly the
another.

6.2 Intervals, points and durations

The most basic facts about the duration of intervals is that they add up properly:

;;duration-DU-plusadd
(forall (?i ?j)
        (=> (meets ?i ?j)
            (= (duration (plus ?i ?j))
               (add (duration ?i) (duration ?j)) ))))

and that points have no duration:

;;duration-DU-zeroduration
(forall (?x)(<=> (timepoint ?x) (= (duration ?x) zero)))

Examples of durations include

;;DU-examples
(and  (timeduration year)
      (timeduration week)
      (timeduration day)
      (timeduration hour)
      (timeduration minute)
      (timeduration second) )

We might also want to insist that nontrivial moments cannot have zero duration. In VC, since
moments are timepoints, this covers them. If not, however, the following  might seem a
reasonable way to do it:

??? (forall (?i:timeinterval)(=> (= (duration ?x) zero)
(moment ?i) ))

but in simple discrete theories it is false, while in simple dense theories it says nothing , since
moments do not exist.  A suitable axiom for general use talks about points:
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(forall (?p ?q)(<=>
(before ?p ?q)
(not (= (duration (between ?p ?q)) zero)) ))

The biconditional guarantees that moments in ENDPOINTS have zero duration, for example,
and that one-point closed intervals in the point-continuum theory also do.

(One might wish to allow  non-pointlike intervals with zero duration, by weakening the
biconditional in  duration-DU-zeroduration to a simple conditional. These things would
complicate the description of clocks, however, so here we assume that they are impossible.)

If time is totally ordered and we select a certain fixed starting timepoint, then any other point
is uniquely defined by the duration of the interval between it and the start time. So timepoints
can be identified  by durations:

;;duration-DU-rigid
(forall (?i ?j)
        (=> (and (timeinterval ?i ?j)
                 (= (beginof ?i) (beginof ?j))
                 (= (duration ?i) (duration ?j)) )
            (= (endof ?i) (endof ?j)) ))

Notice that this does not claim that the interval itself is uniquely identified, since open and
closed intervals have the same duration in the point continuum. However, in theories where
endpoints identify intervals this will of course suffice. Also, rigidity does not hold in branching
time models, where the clock or calendar time of a timepoint fails to uniquely specify it since
there are many alternative timelines all going at the same rate, as it were. A convenient
variation on the rigidity axiom uses the function from, from a point and a duration to the point
that much later:

;;from-DU
(deffunction from
(forall (?p ?d) (= ?d (duration (between ?p (from ?d ?p)))))
(forall (?p ?d)(=> (and (timepoint ?p)(timeduration ?d))
                   (timepoint (from ?p ?d))))
)

Backwards and reflected intervals have negative and negated durations:

;;positive-DU
(defrelation positive
(forall (?p ?q)
        (<=> (before ?p ?q)
             (positive (duration (between ?p ?q))) ))

;;DU-back
(forall (?i)(= zero (add (duration ?i)(duration (back ?i)))))

Some other useful functions include a function which totals a sequence of durations

;;total-DU
(deffunction total
(forall (?d @s)
        (and  (= (total ?d) ?d)
              (= (total ?d @s)
                 (add ?d (total @s)) )))
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)

and one that forms a sequence of the durations of a sequence of intervals, a kind of duration-on-
sequences function:

;;dduration-DU
(deffunction  dduration
(forall (?x @l)(=> (timeinterval ?x)
                   (and (= duration ?x)(dduration ?x))
                        (= (dduration ?x @l)
                        (listof (duration ?x) (dduration @l)))))))

6.3  Simple Clocks

A simple clock is characterised by a start, which is a timepoint, and a beat, which is  a
duration. It works by counting the number of beats between its start time and the time being
measured.  A clock makes a continuous timeline seem discrete by mapping every time to a
clocktick.

;;simpleclock-CL
(forall (?c) (=>(simpleclock ?c) (and (duration (beat ?c))
                                 (timepoint (starttime ?c)))))

;;clocktick-CL
(defrelation clocktick (?p ?c) :=
            (exists (?n)(and (integer ?n)
                             (= (duration (between (starttime ?c) ?p))
                                (mult ?n (beat ?c)) ))))
hence

 (forall (?n ?c)
(clocktick (from (times ?n (beat ?c)) (starttime ?c)) ?c))

Since intervals can be backwards, a clock ‘tells’ the time even before its starttime, but such
clocktimes are negative.

A (simple) clock time is the time of a point as measured by the clock, which is equal to the time
of the immediately preceding clocktick:

;;simpleclocktime-CL
(defunction simpleclocktime (?p ?c)
  (and  (integer (simpleclocktime ?p ?c))
        (less (mult (simpleclocktime ?p ?c) (beat ?c))
              (duration (between (starttime ?c) ?p)))
        (not (less (mult (+ 1 (simpleclocktime ?p ?c)) (beat ?c))
                   (duration (between (starttime ?c) ?p))  ))
        )
  )
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.   .   .   .

n n+1

clocktime = n

n-10

This is the best we can do in general, since no clock can precisely locate every point in a dense
timeline. In the discrete timelines, however, we might hope for more accuracy.

Until now nothing has insisted that every moment of a discrete time must have the same
duration, and indeed this would not be an appropriate claim to make in all theories (Situation-
Calculus Time for example). However, now seems the right time to make this insistence. If we
call this universal atomic amount of time  quantum,  then we have simply:

(forall (?i) (<=> (moment ?i)
             (= (duration ?i) quantum) ))

(In some continuous time theories, this means that  quantum is zero; in others, it says nothing
since there are no moments.)

We can reasonably expect that a clock-beat is some definite number of quanta, since when time
is discrete there are no other times available for the clock to tick at. Indeed, if time is discrete
then every duration is made of quanta:

(forall (?d)(<=> (timeduration ?d)
                (exists (?n)
                        (= ?d (mult ?n quantum)) ) ))
)

and so it follows that a clock which could beat at the pulse-rate of the universe could indeed
serve as a universal clock:

;;quantumclock-Q
(defrelation quantumclock (?c) :=
             (and (simpleclock ?c)(= (beat ?c) quantum))))

;;simpleclocktime-Q
(forall (?c ?p)
        (=>  (and (quantumclock ?c)(timepoint ?p))
             (= (mult (simpleclocktime ?p ?c) (beat ?c))
                (duration (between (starttime ?c) ?p))))))

Clocks are shift-invariant. This is easier to say in KIF than in English:

;;CL-shift-invariance
(forall (?c ?d)
       (=> (and (= (beat ?c) (beat?d))
                (clocktick (starttime ?d) ?c))
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           (forall (?p)(=>(timepoint ?p)
                          (= (simpleclocktime ?p ?c)
                             (+ (simpleclocktime ?p ?d)
                                (simpleclocktime (starttime ?d) ?c)))))
        ))

Models

Again, the semantic weight of these axioms is closely tied to the possible
interpretations of the arithmetic terms that occur in them. If  integer  really refers
only to integers, then all the nonstandard models of the timeline are ruled out and
these axioms, when added to any of the earlier discrete-point theories, have only
standard interpretations. However, nonstandard models of arithmetic adapt
perfectly well to give nonstandard clocks, which might be called pink-rabbit clocks,
since they beat forever and then keep on going.

6.4  Calendars

A calendar is a fixed system of timeintervals  and subintervals which divide the timeplenum
into separate, identifiable pieces. A clock defines a calendar, but not all calendars can be
defined that way, since a calendar need not be shift-invariant.

One way to think of a calendar is that it provides a way to make continuous time feel like
discrete time at a certain scale. Thus we can talk of the next year, next month, next minute etc.,
and combine these together to refer to the third hour of the second day of the ninth week in
1995.

A simple calendar is a clock with a finite sequence of durations which add up to its beat. Years
divided into months and days divided into hours are examples. The beat of a simple calendar is
called its scale., and the sequence of durations is its rhythm  For example, our conventional
year-scale calendar’s rhythm is the sequence <31 days, 28days, 31days,30days,31
days,30days,31 days,31 days,30 days,31 days,30 days,31 days>.  (This description insists that
this is true even in a leap year, by the way: the 29th of February is always a shift-interval
rather than a part of the calendar pattern.)

;;simplecalendar-CL
(defrelation simplecalendar
(forall (?c)
        (=> (simplecalendar ?c)
            (and (simpleclock ?c)
                 (= (beat ?c) (total (rhythm ?c))))))
)

Since  KIF sequences are finite, such pathological examples as an oscillator approaching
infinite frequency are ruled out. A rhythm defines a sequence of intervals between successive
clockticks.

;;dates-CL
(deffunction dates
(forall (?c ?p) (=> (and (simplecalendar ?c) (clocktick ?p ?c))
                    (and (= (beginof (first (dates ?c ?p)) ?p)
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                            (meets (dates ?c ?p))
                            (= (rhythm ?c) (dduration (dates ?c ?p))  )
                            )
                         )))

So the dates of a year are the months, and the dates of a day are the hours.  (This axiom should
be rewritten for the point continuum, since the simple requirement of meeting may be too
simplistic. It would lead for example to some hours being open and some closed. The proper
thing to say there is that there is a moment between them.)

6.5  Correcting and adjusting Clocks

Clocks are prone to corrections of various kinds. A clock may be adjusted to be faster or slower,
and clocks can be given deliberate hiccups as in leap years. Since leap years are regular, one
could define a four-year clock to take them into account, but an alternative approach is to
introduce the notion of a correction.  Since our definition of clock insists that they never change,
we have to describe making a correction as shifting to a different, but usually closely related,
clock.  For example, leap years and leap seconds re-set the clock’s starttime slightly:

;;shift-CL
(defrelation shift (?c ?d ?e) :=
(and (= (beat ?c) (beat ?d))
     (= ?e (duration (between (starttime ?c) (starttime ?d))))))

The shifting interval need not be measurable by the clock. It can be much smaller than the beat
of the clock, as in usually the case with such minor corrections.

Correcting the rate just amounts to re-setting the beat; but as this happens at a particular time,
we usually implicitly consider the start-time also to have shifted to keep things straight.

;;adjust-CL
(defrelation adjust (?c ?d ?e ?p) :=
(and  (= (beat ?d) (add (beat ?c) ?e))
      (= (simpleclocktime ?p ?c)(simpleclocktime ?p ?d))
      )
)

It follows that  when a clock is adjusted, its starttime moves to the timepoint which it
would have to have been in order to have arrived at this time at the new rate!

Adjust makes a clock slower. The usefulness of allowing negative durations and backward
intervals is shown by the fact that to make a clock faster is simply to make it slower by a
negative amount.

We can now consider an intuitive ‘clock’ to be a series of simple clocks, each one differing from
the previous one by a correction of some kind happening at a point.  In the point continuum,  the
changes occurring during  single-point closed intervals. In the glass continuum, the changes
happen at the moments where the longer intervals meet each other.  Either way, time would be
ambiguous only for a moment.
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Since this correcting might go on for ever, the sequence of clocks might be infinite, so cannot be
described as a KIF sequence. It is simplest to define a function. Every clock has an associated set
of points, called the resettimes, totally ordered by before.  If this is empty then the clock is
simple clock.  We need the idea of the next reset time, provided by:

;;nextone-CL
(deffunction nextone
  (and  (member (nextone ?p ?s) ?s)
        (before ?p (nextone ?p ?s))
        (forall (?x) (=> (member ?x ?s)
                         (not (before ?p ?x (nextone ?p ?s)))))
  ))

I will now slip into second-order syntax for a moment, in order to define this predicate on
functions:

;;clock-CL-1
(forall (?c)
        (<=> (clock ?c)
             (and (forall (?x) (=> (member ?x (resettimes ?c))
                                   (timepoint ?x) ))
                  (forall (?p)
                          (=> (member ?p (resettimes ?c))
                              (simpleclock (value ?c ?p))))
                   )))

and then of course the time as measured by a clock is the clocktime on the simple clock currently
in use:

;;clock-CL-2
(forall (?p ?c)
        (or
         (and (empty (resettimes ?c))
              (simpleclock ?c)
              (= (clocktime ?p ?c) (simpleclocktime ?p ?c))  )
         (forall (?q )
                 (<=>
                  (and (member ?q (resettimes ?c))
                       (before ?q ?p (nextone ?q
                                              (resettimes ?c))))
                  (= (clocktime ?p ?c)
                     (simpleclocktime ?p (value ?c ?q)) )))))

6.6  Compound clocks and calendars

Days are a particularly simple form of calendar in which the inner beats are themselves
regular clockticks. It is worth giving this class a special name, since everything becomes so
much simpler in this case. Let us say that one simple clock fits another if all its clockticks are
also clockticks of the second:

;;fits-cl
(deffunction fits)
(forall (?c ?d )
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        (<=> (fits ?c ?d)
             (forall (?p) (=> (clocktick ?p ?c) (clocktick ?p ?d)))))

Then it follows that the first one's beat is an integral number of beats of the second.  A sequence
that long of identical beats of the second clock would serve as the rhythm of a calendar whose
beat was the first clock. This is exactly the relationship between minutes  and seconds, days
and hours, and  years and weeks. That these clocks all fit together so nicely is the reason why
any time can be defined as a certain number of milliseconds after the birth of Christ. In discrete
time, every clock fits onto the quantum clock, but in dense time arbitrarily fine misfits of rate
can occur.

We can now define a compound clock to be a sequence of  clocks, each of which fits the next ,
which restarts at the beginning of each beat of the first. The basic relation is between a simple
clock and a (not simple) clock which gets reset at midnight:

;;dividesup-CL
(defrelation dividesup
(forall (?c ?d)
        (<=> (dividesup ?c ?d)
             (and (forall (?p)
                          (and (<=> (clocktick ?p ?c)
                                    (and (member ?p (resettimes ?d))
                                         (= ?p
                                            (starttime (value ?d ?p)))
                                         )
                                    )
                               )
                          ))))
)

and then:

6.6.3 ;;compoundclock-CL
(defrelation compoundclock)
(forall (?c ?d @s)
        (<=> (compoundclock ?c ?d @s)
             (and  (dividesup (value ?c ?d))
                   (compoundclock ?d @s))))

So each of the slower clocks has to inherit the same corrections, if any, that are made to the
faster ones.  This means for example that adding a leap second at midnight on the 17th of July
makes the enclosing week, year or century also shift forward by that second, if the whole nested
structure is asserted to be a compound clock.

-------------------------

There is almost no end to the temporal structures that could be defined and that might be useful.
For example, this document has not considered intermittent intervals, or developed the idea of
branching-time clocks, or transitivity tables for relativistic time.  However, these ideas are
clearly capable of considerable expressive power, and I hope that the careful comparative
development might be of some utility to future temporal formalizers.
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