
Using Common Logic

= Mapping other KR techniques to CL.
= Eliminating dongles.

= The zero case

Pat Hayes
Florida IHMC

John Sowa talked
about this side.

Now we will look more
closely at this side,

using the CLIF dialect.

Wild West Syntax (CLIF)

Any character string can be a name, and any name can play any syntactic role, and any
name can be quantified. Anything that can be named can also be the value of a
function.

All this gives a lot of freedom to say exactly what we want, and to write axioms
which convert between different notational conventions.

It also allows many other 'conventional' notations to be transcribed into CLIF
directly and naturally.

It also makes CLIF into a genuine network logic, because CLIF texts retain their
full meaning when transported across a network, archived, or freely combined
with other CLIF texts. (Unlike OWL-DL and GOFOL)

Mapping other notations to CLIF.
1. Description Logics

Description logics provide ways to define classes in terms
of other classes, individuals and properties.

All people who have at least two sons enlisted in the US Navy.

<this class> owl:intersectionOf [:Person _:x]
_:x rdf:type owl:Restriction
_:x owl:minCardinality "2"^^xsd:number
_:x owl:onProperty :hasSon
_:x owl:toClass _:y
_:y rdf:type owl:Restriction
_:y owl:hasValue :USNavy
_:y owl:onProperty :enlistedIn

Mapping other notations to CLIF.
1. Description Logics

Classes are CL unary relations, properties are CL binary
relations.
So DL operators are functions from relations to other
relations.

(owl:IntersectionOf Person (owl:minCardinality 2 hasSon (owl:valueIs enlistedIn USNavy)))
 (AND Person (MIN 2 hasSon (VAL enlistedIn USNavy)))

((AND Person (MIN 2 hasSon (VAL enlistedIn USNavy))) Harry)
(= 2ServingSons (AND Person (MIN 2 hasSon (VAL enlistedIn USNavy))))
(2ServingSons Harry)
(NavyPersonClassification 2ServingSons)
(BackgroundInfo 2ServingSons
 'Classification introduced in 2003 for public relation purposes.')

Mapping other notations to CLIF.
1. Description Logics

The meanings of these constructions can be axiomatized in CLIF:

(forall (x y ...)(iff
 ((AND y ...) x)
 (and (y x)((AND ...) y))
))
(forall (x)((AND) x))

(forall (x y p)(iff ((VAL p x) y) (p y x)))

(forall (c y p)(iff ((SOMEARE p c) y) (exists (z)(and (p y z)(c z)))))

(forall ((n integer) x p c)(iff ((MIN n p c) x)(exists n (z)(and (p x z)(c z)))))

This is important to ensure semantic coherence, as a reference standard. Practical
reasoners would probably not use these axioms directly.

Typical 'recursion' using
sequence markers.

For (lots) more detail, see
http://www.ihmc.us/users/phayes/cl/sw2scl.html
http://philebus.tamu.edu/cmenzel/Papers/AxiomaticSemantics.pdf

http://www.ihmc.us/users/phayes/cl/sw2scl.html
http://www.ihmc.us/users/phayes/cl/sw2scl.html
http://philebus.tamu.edu/cmenzel/Papers/AxiomaticSemantics.pdf
http://philebus.tamu.edu/cmenzel/Papers/AxiomaticSemantics.pdf

Mapping other notations to CLIF.
1. Description Logics

Relatively minor changes to these axioms give CL theories
corresponding to the various different description logics, and variants
such as OWL-Full, OWL2 (forthcoming) and terHorst's intensional
OWL (just use if instead of iff), as well as RDF and RDFS.

One common syntax and one fixed logic covers all these cases, which can
be viewed as a selection of a vocabulary and a "logical ontology". By
reserving a single namespace for each, reasoners can easily recognize
sub-cases where efficient decidable DL reasoning can be used.

For interoperability, the key is that these translations all use a single
syntax and semantics. The process of creating a new standard is vastly
simplified. All the 'semantic' decisions can be recorded as CL axioms,
and checked mechanically.

Several recent standards, notably Semantics of Business
Vocabulary and Rules (SBVR) are based on modal logics; several
ontology frameworks (OntoClean) use modal language; and
some temporal frameworks use tense-like operators.

There are two approaches to mapping modal languages into
CL.

Modal truth (necessity, temporal logic) is handled by
introducing 'possible worlds' AKA "contexts".

Permissions and obligations (as in SBVR) are handled more
intuitively by an ontology of actions and events.

Mapping other notations to CLIF.
2. Modal notations

Consider a simple temporal modal/hybrid language, in which sentences are
asserted using tenses, as in "it will rain in Oaxacala", and suppose this is 'said'
on Sunday 4 May 2008

(Future (Precipitation Oaxacala))

CL doesn't have a modal operator (such as Future) so we will talk about
times explicitly and then Future translates to a quantifier: "At some time t later
than now, ...". Need to know two things: the current time ("now"); and which
of our relations and/or names are time-dependent (Precipitation is, Oaxacala
isn't.)

Add a temporal parameter to those that are, add the relationship to now,
then quantify:

(exists ((t time))(and
 (later t 05042008)
 (Precipitation Oaxacala t)
))

OR: ((Precipitation t) Oaxacala) OR (Precipitation (Oaxacala t))

Mapping other notations to CLIF.
2. Modal truth

Mapping other notations to CLIF.
2. Modal truth

Some names (role identifiers) are themselves time-dependent:

 (= (PresidentUSA 01051999) WilliamClinton)

There are many points of view, debates, etc. about how best to conceptualize
things extended in time. All of these boil down in practice to decisions about
where to put the time parameter. Some frameworks prohibit role identifiers in
certain cases, etc.. As long as the time parameter is placed somewhere, it is
straightforward to translate between conventions which adopt these various
restrictions and philosophical rules.

(forall ((t time)(c OBOContinuant) r)(iff
 (r c t)
 (r ((OBO2EPISTLE c) t))
)) The translation is represented here by a

'conversion function' between the
vocabularies. In practice this might be a

lookup table relating the names.

Mapping other notations to CLIF.
2. Modal truth

Notice, these times are 'pointlike' (perhaps not mathematical points);
truth relative to an interval needs to be handled with more care (true
throughout, or true only somewhere in the interval?) The results can be
complicated, but the translation is completely mechanical.

All last year there was someone guarding the house.

(forall ((t time)(if
 (in t [last year])
 (exists ((i timeInterval)(and
 (in t i)
 (exists ((x Person))(and
 (forall ((u time)(if
 (in u i)
 (guards x [the house] u)
))
))
))

Mapping other notations to CLIF.
3. SBVR and actions

SBVR rules conditionally permit or prohibit actions and states of affairs:
If a car is rented to a driver then that driver must have a valid driver's license.

CL has no notion of must, but it can describe states of affairs and actions, and
then describe the conditions under which they are classified into 'permitted'
or 'forbidden' categories.

If a car is rented to a driver who does not have a valid license, then the rental is a
prohibited transaction.

(forall ((x CarRental))(if (not (ValidLicencedToDrive (driver x)))
(ProhibitedTransaction x)))

This translation is semi-mechanical, but the CL version has several advantages,
most notably allowing for different kinds of prohibition.

This can be used together with temporal-style language to handle time-
dependent business rules. All the necessary reasoning can be handled within CL.

Wild West Syntax (CLIF)

= Eliminating dongles.

Any character string can be a name, and any name can play any syntactic role, and any
name can be quantified. Anything that can be named can also be the value of a
function.

All this gives a lot of freedom to say exactly what we want, and to write axioms
which convert between different notational conventions.

Dongle vocabulary: terms that carry no meaning, but are
there just to make the syntax "look right".

Pat is Human
Human is a biological category

(Human Pat)
(BiologicalCategory Human)

Pat rdf:type Human .
(Instance Human Pat)
(hasType Pat Human)
(AppliesTo Human Pat)
isa Pat Human
Pat a Human

An Objection

But surely there has to be some limit. I mean, dash it all, surely something like
this:

('Pat' c)
would be silly. Character sequences just aren't the kind of thing that can
possibly be a predicate.

Yet in fact, there are at least two very convincing uses for this kind of expression.

== RDF typed literals have exactly this form and this semantics.

== In the IKRIS project, we needed 'contextual names' which indicate what a name
denotes in a context. We could have written

(MeaningInContext 'Pat' c)
but this is a classical dongle. It is simpler to just write

('Pat' c)
and think of it (if you like) as a name with a subscript: Patc

Moral: If people are using it successfully, it probably makes some kind of sense.

The zero case

An 'atomic' sentence (atom) is a relation followed by a sequence of arguments:

(Human Pat)
(timeOrder
 (birth Pat) (marriage Pat Jackie) (graduation Pat) (grantedTenure Pat)(brokeCollarBone Pat)
)

and a term is a function followed by a sequence of arguments:

(Human (fatherOf Pat))
(= (+ 23 457 1219 27) 1926)

CLIF argument sequences can be any length, including zero:

(timeOrder)
(fatherOf)

so the question arises, what use are such things? Answer: whatever use you want them to have.

Some examples...

The zero case
Base case for recursive definitions.
Already seen this with AND in description logics, but some more examples:

(forall (x y ...)(iff
 ((OR y ...) x)
 (or (y x)((OR ...) y))
))
(forall (x)(not ((OR) x)))

Eg ((OR mammal duck) Platypus3)
 (or (mammal Platypus3)((OR duck) Platypus3))
 (or (mammal Platypus3) (or (duck Platypus3) ((OR) Platypus3)))
 (or (mammal Platypus3) (or (duck Platypus3) False))
 (or (mammal Platypus3) (duck Platypus3))

(forall (r)(if
 (Predicative r)
 (and
 (forall (x ...)(if (r x ...)(and (r x)(r ...))))
 (r)
)
))

Eg (Predicative Human)
 (Human Pat John Chris Arthur Adam)
 (forall (x)(if (TypeClassifier x)(Predicative x)))
 (Predicative Predicative)
 (Predicative Human Animal Mineral Vegetable)

The zero case

Indirect Names

Already mentioned 'contextual names' (actually, terms with a character string used as a function) such as
('Pat' c) ('Pat' (beliefContext Joe))

Interesting idea is to use the zero case to mean the same as the name itself:

(= ('Pat') Pat) (= Chris ('Chris')) etc..

This cannot be axiomatized, but it can be treated as a semantic extension of CLIF (IKL). Why bother? Because now
we can relate things to their names, and make assertions about the relationship. For example:

(forall (R (L nameList))(iff
 (closedWorldFor R L)
 (forall ((y charseq)) (if (R (y))(member y L)))
))

axiomatizes the idea of a 'closed world' supporting negation as failure, as in Prolog and related systems. Note, this
does not require a non-monotonic logic !

If y is a character string, (y) is whatever y is the name of.

The zero case: propositions
Propositions

A relation with no arguments gives an atomic sentence with just one name in it:

 (R)

Being a sentence, this has a truth-value, i.e. it is true or false.

In this case, R represents a proposition, i.e. an object with a truth-value. To fix the truth-conditions for R, just connect it
to a longer sentence which expresses them directly:

(iff (R) (exists ((x FrenchCitizen)(y IsraeliCitizen))(Married x y)))

Propositions allow even more translations into CLIF, including all of 'context logic'. They also allow CLIF ontologies
to be self-describing in a strong sense, by making assertions about their own propositions.

IKL (a semantic extension of CLIF) has a built-in notation for this, written using 'that':

(= R (that (exists ((x FrenchCitizen)(y IsraeliCitizen))(Married x y))))

which is very convenient and natural to use, but is not essential.

The zero case: a moral
When CL was being designed, we had not thought of any of these
uses. We included the 'zero case' simply because there was no reason
not to, and we wanted the Wild West Syntax to be as free as possible
from unnecessary restrictions, on general grounds of economy and
elegance.

In every case, the 'peculiar' constructions thus allowed have turned
out to be practically useful. They provide for more compact, efficient
ways to write axioms, more powerful reasoning, far more flexibility of
expression for interoperability, and entire new areas of important
expressivity. They surprised us.

We think that the logic is telling us something. First-order logic has
long been seen as the foundational formalism for knowledge
representation. But it is even better than it has traditionally seemed to
be.

All it needed was to be set free.

More...

SBVR http://www.businessrulesgroup.org/sbvr.shtml

IKL http://tinyurl.com/6yyzxe

Description Logics into CL
 http://www.ihmc.us/users/phayes/cl/sw2scl.html
 http://philebus.tamu.edu/cmenzel/Papers/AxiomaticSemantics.pdf

These Slides
 In Powerpoint: http://tinyurl.com/6rq643
 In PDF: http://tinyurl.com/5wreyp

http://www.businessrulesgroup.org/sbvr.shtml
http://www.businessrulesgroup.org/sbvr.shtml
http://tinyurl.com/6yyzxe
http://tinyurl.com/6yyzxe
http://www.ihmc.us/users/phayes/cl/sw2scl.html
http://www.ihmc.us/users/phayes/cl/sw2scl.html
http://philebus.tamu.edu/cmenzel/Papers/AxiomaticSemantics.pdf
http://philebus.tamu.edu/cmenzel/Papers/AxiomaticSemantics.pdf
http://tinyurl.com/6rq643
http://tinyurl.com/6rq643
http://tinyurl.com/5wreyp
http://tinyurl.com/5wreyp

