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1 Introduction

A traditional approach to designing hardware or control sys-
tems is to begin with a task to be accomplished, proceed to
brainstorm possible solutions, and select from the options
based on their relative merits. This approach discourages
settling for preconceived, suboptimal solutions. In cases
where millions of years of evolution appear to point toward
a particular answer, we may be tempted to abandon this
methodology and adopt the biological solution. It is pre-
cisely in these situations, however, that we must be most
cautious of accepting the apparent answer. Evolution tends
to improve survival, but not necessarily optimize perfor-
mance of any one desired task. Therefore, we should at-
tempt to extract only the principles relevant to the task of
interest and measure them against other design candidates.I
propose a framework for extracting biological principles us-
ing optimization and adapting them for application to robots.

2 Method/Case Study

The general method is illustrated through a case study: iso-
lating the effect of swing leg retraction on running energy
efficiency.

2.1 Observe
Swing leg retraction is the behavior observed of humans
and animals in which the airborne front leg rotates rearward
prior to touchdown [1] [2] [3]. It is interesting that animals
do not always simply position the foot and hold it, awaiting
impact.

2.2 Hypothesize
It seems intuitive that the unexpected behavior of the swing
leg might reduce the impact between the foot and the ground
[4]. It is further hypothesized that if swing leg retractionis
applied, then overall running efficiency will improve [5]. I
wished to test this principal for its applicability to running
machines.

2.3 Model
I modeled the running of the Phides robot [6] using the sys-
tem of rigid bodies illustrated in Figure 1. I quantified swing
leg retraction as the angular rate of the ‘virtual leg’ line con-
necting the hip to the point foot, and measured energetic

ω

Figure 1: The Phides robot model is 2-dimensional (planar) and
consists of five rigid bodies with distributed mass: a
torso, two upper legs, and two lower legs. To match
the Phides robot as it currently runs, I fix the rotation
of the torso with respect to the world. This leaves the
model with 6 degrees-of-freedom: the horizontal and
vertical positions of the hip, the rotations of two hip
joints, and the rotations of two knee joints. Torques,
limited to 21.4 Nm to represent the actuator limitations
of the robot, act at all four joints.

efficiency using mechanical cost of transport [7], or the ab-
solute work done over a stride normalized by robot weight
and distance traveled.

2.4 Optimize
Constraining the retraction rate to each of several values
within a range, the mechanical cost of transport of limit
cycle running is minimized starting from 10 random seeds.
Optimization was performed using GPOPS [8] (the license
of which requires that [9] [10] [11] [12] [13] [14] [15] [16]
[17] be explicitly cited). GPOPS robustly converged to dif-
ferent local minima limit cycles from these seeds, but the
values of the mechanical cost of transport tended to cluster
toward values presumed to be the global minima.

2.5 Analyze
The values of the minima exhibited a trend as retraction rate
varied, as shown in Figure 2, which can be interpreted as the
global sensitivity of the mechanical cost of transport with
respect to the swing leg retraction rate.

2.6 Conclude
From this I conclude that for this running speed and these
particular parameters, swing leg retraction can improve en-
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Figure 2: Each point represents the locally minimal mechanical
cost of transport of an optimal limit cycle found by non-
linear programming from a random initial seed. For
each swing leg retraction rate, the minimal mechanical
costs of transport cluster towards what appears to be
a lower bound. The resulting curve approximates the
global lower bound, or the sensitivity, of the minimal
mechanical cost of transport as a function of swing leg
retraction rate.

ergetic efficiency to a certain extent, beyond which further
swing leg retraction speed decreases energetic efficiency.By
repeating a similar experiment for multiple running speeds
and varied parameters, I generalized these results to a class
of dynamic robots.

I do not attempt to use the results of optimization at face
value or directly apply the quantitative results to a partic-
ular robot. I am interested in distilling notable ideas from
observation that can be used as intuition and suggest direc-
tions of more detailed study. For instance, I do not claim
that the retraction rate found to yield minimal mechanical
cost of transport is ‘best’ for this particular robot, much less
all robots. What I take away is the notion that swing leg
retraction does indeed affect overall energetic efficiency, as
hypothesized. However, I found that the dependence of this
effect on speed and parameters is more complicated than ex-
pected. Even more surprising was that as retraction rate in-
creased, so did impact losses, which was later explained but
initially conflicted with intuition.

3 Future Case Studies

Using this framework, I will attempt to study such topics as
the effects of:

• leg morphology on biped running speed and efficiency
• gait transitions on quadruped running efficiency
• spine flexibility on running speed and efficiency
• tails on quadruped maneuverability

From each study, I hope to distill information that can be
added to our intuition and thus used in the robot controller
or hardware design process.

4 Open questions

I would like to discuss the following questions at the confer-
ence:

• To what extent can we trust lower-dimensional dy-
namic models of running and walking for building our
intuition?

• To what extent do answers of the form ‘The effect
of [this] on the ‘optimal’ value of [that]’ answer the
question ‘What is the effect of [this] on [that]?’
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